1. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502 Google Scholar
2. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher order MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101 Google Scholar
3. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901 Google Scholar
4. Yuan, H. W., S. X. Gong, X. Wang, and W. T. Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302 Google Scholar
5. Varmazyar, S. H. and M. N. Moghadasi, "An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution ," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404 Google Scholar
6. Varmazyar, S. H. and M. N. Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIERB07121303 Google Scholar
7. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
8. Engheta, N., W. D. Murphy, V. Rokhlin, et al. "The Fast Multipole Method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, 1992.
doi:10.1109/8.144597 Google Scholar
9. Lu, C. C. and W. C. Chew, "Fast algorithm for solving hybrid integral equations," IEE Proceedings-H, Vol. 140, No. 6, 455-460, 1993. Google Scholar
10. Song, J. M. and W. C. Chew, "Fast multipole method solution using parametric geometry," Microwave and Optical Technology Letters, Vol. 7, No. 16, 760-765, 1994.
doi:10.1002/mop.4650071612 Google Scholar
11. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Ch. 3, Artech House, 2001.
12. Rui, P. L., R. S. Chen, Z. W. Liu, and Y. N. Gan, "Schwarz-Krylov subspace method for MLFMM analysis of electromagnetic wave scattering problems," Progress In Electromagnetics Research, Vol. 82, 51-63, 2008.
doi:10.2528/PIER08013003 Google Scholar
13. Zhang, Y. J. and E. P. Li, "Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
doi:10.2528/PIER07030503 Google Scholar
14. Wan, J. X., T. M. Xiang, and C. H. Liang, "The fast multipole algorithm for analysis of large-scale microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 49, 239-255, 2004.
doi:10.2528/PIER04042201 Google Scholar
15. Pan, Y. C. and W. C. Chew, "A fast multipole metho for embedded structure in a stratified medium," Progress In Electromagnetics Research, Vol. 44, 1-38, 2004.
doi:10.2528/PIER03050602 Google Scholar
16. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling," IEEE Antennas and Propagation SocietyInternational Symposium, Vol. 4, 618-621, June 2002. Google Scholar
17. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for electromagnetic modeling," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279 Google Scholar
18. Altman, Z. and R. Mittra, "Combining an extrapolation technique with the method of moments for solving large scattering problems involving bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 44, 548-553, Apr. 1996.
doi:10.1109/8.489307 Google Scholar
19. Altman, Z. and R. Mittra, "A technique for extrapolating numerically rigorous solutions of electromagnetic scattering problems to higher frequencies and their scaling properties," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 744-751, Apr. 1999.
doi:10.1109/8.768815 Google Scholar
20. Kwon, D. H., R. J. Burkholder, and P. H. Pathak, "Efficient method of moments formulation for large pec scattering problems using Asymptotic Phasefront Extraction (APE)," IEEE Trans. Antennas Propagat., Vol. 49, No. 4, 583-591, Apr. 2001.
doi:10.1109/8.923318 Google Scholar
21. Aberegg, K. R. and A. F. Peterson, "Application of the integral equation-asymptotic phase method to two-dimensional scattering ," IEEE Trans. Antennas Propagat., Vol. 43, 534-537, May 1995.
doi:10.1109/8.384199 Google Scholar
22. Kowalski, M. E., B. Singh, L. C. Kempel, K. D. Trott, and J.-M. Jin, "Application of the integral equation asymptotic phase (IE-AP) method to three-dimensional scattering ," J. of Electromagn. Waves and Appl., Vol. 15, 885-900, July 2001. Google Scholar
23. Taboada, J. M., F. Obelleiro, J. L. Rodriguez, I. Garcia-Tunon, and L. Landesa, "Incorporation of linear-phase progression in RWG basis functions," Microwave and Optical TechnologyL etters, Vol. 44, No. 2, 106-112, January 2005.
doi:10.1002/mop.20560 Google Scholar
24. Abboud, T., J. C. Nedelec, and B. Zhou, "Improvement of the integral equation method for high frequency problems," Third International Conference on Mathematical Aspects of Wave Propagation, SIAM, 178-187, 1995. Google Scholar
25. Aberegg, K. R., "Electromagnetic scattering using the integral equation - asymptotic phase method,", Ph.D. dissertation, Georgia Institute of Technology, 1995. Google Scholar
26. Shen, X., A. W. Davis, K. R. Aberegg, and A. F. Peterson, "Highly parallel implementation of the 3D integral equation asymptotic phase method for electromagnetic scattering," Applied Computational Electromagnetics Society(A CES) Journal, Vol. 13, 107-115, July 1998. Google Scholar
27. Darrigrand, E., "Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation," J. Computational Physics, Vol. 181, 126-154, 2002.
doi:10.1006/jcph.2002.7091 Google Scholar
28. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649 Google Scholar
29. Wilkes, D. L. and C. C. Cha, "Method of moments solution with parametric curved triangular patches," Antennas and Propagation SocietyInternational Symposium, Vol. 3, 1512-1515, June 1991. Google Scholar
30. Zhu, N. Y. and F. M. Landstorfer, "Application of curved parametric triangular and quadrilateral edge elements in the moment solution of the EFIE," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 9, 319-321, Sept. 1993.
doi:10.1109/75.244865 Google Scholar
31. Brown, W. J. and D. R. Wilton, "Singular basis functions and curvilinear triangles in the solution of the electric field integral equation," IEEE Trans. Antennas Propagat., Vol. 47, No. 2, 347-353, Feb. 1999.
doi:10.1109/8.761075 Google Scholar
32. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 802-810, Aug. 1995.
doi:10.1109/8.402199 Google Scholar
33. Yan, S. and Z. Nie, "A novel mixed basis function for method of moment," Proceedings of Asia-Pacific Microwave Conference 2005, Vol. 3, Suzhou, China, Dec. 4–7, 2005. Google Scholar
34. Ergul, O. and L. Gurel, "Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1103-1110, Apr. 2007.
doi:10.1109/TAP.2007.893393 Google Scholar