Vol. 87
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-31
Modal Analysis and Dispersion Curves of a Bragg Fiber Having Asymmetric Loop Boundary
By
Progress In Electromagnetics Research, Vol. 87, 117-130, 2008
Abstract
An analysis of the modal propagation characteristics of a Bragg fiber having asymmetric loop boundary is made, using a simple matrix method. The boundary condition is replaced by matrix equation andthe modal eigen value equation is obtained under weak guidance condition. The computed results are shown in the form of dispersion curves and cutoff frequencies andare compared with the dispersion curves of a standard Bragg fiber having circular core cross section. It is seen that the proposed Bragg fiber with a small number of claddings (two of four) shows comparable or even better performance than the standard Bragg fiber with respect to a few mode-guidance properties.
Citation
Yogendra Kumar Prajapati Vivek Singh Jai Prakash Saini , "Modal Analysis and Dispersion Curves of a Bragg Fiber Having Asymmetric Loop Boundary," Progress In Electromagnetics Research, Vol. 87, 117-130, 2008.
doi:10.2528/PIER08090102
http://www.jpier.org/PIER/pier.php?paper=08090102
References

1. Dasgupta, S., B. P. Pal, and M. R. Shenoy, "Bragg fibers," Guided Wave Optical Components and Devices, 2005.

2. Fink, Y., D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all dielectric structure," J. Lightwave Technol., Vol. 17, 2039-2041, 1999.
doi:10.1109/50.802992

3. Ouyang, G., Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibers: Single-mode transmission and dispersion characteristics," Opt. Express, Vol. 9, 733-747, 2001.

4. Xu, Y., R. K. Lee, and A. Yariv, "Asymptotic analysis of Bragg fibers," Opt. Letters, Vol. 25, 1756-1758, 2000.
doi:10.1364/OL.25.001756

5. Xu, Y., G. X. Ouyang, R. K. Lee, and A. Yariv, "Asymptotic matrix theory of Bragg fibers," J. Lightwave Technol., Vol. 20, 428-440, 2002.
doi:10.1109/50.988991

6. Marcou, J., F. Brechet, and P . Roy, "Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths," J. Opt. A, Vol. 3, S144-S153, 2001.

7. Argyros, A., "Guided modes and loss in Bragg fibres," Opt. Express, Vol. 10, 1411-1417, 2002.

8. Xu, Y. and A. Yariv, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express, Vol. 11, 1039-1049, 2003.

9. Dasgupta, S., B. P. Pal, and M. R. Shenoy, "Design of a low loss fiber with high negative dispersion for the TE01 mode," Frontiers in Optics 2004 Technical Digest, 2004.

10. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research L, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902

11. Ghorbaninejad, H. and M. Khalaj-Amirhosseini, "Compact bandpass filters utilizing dielectric filled waveguides," Progress In Electromagnetics Research B, Vol. 7, 105-115, 2008.
doi:10.2528/PIERB08031101

12. Brovenko, A., P. Melezhik, A. Poyedinchuk, N. Yashina, and G. Granet, "Surface resonances of metal stripe grating on the plane boundary of metamaterial," Progress In Electromagnetics Research, Vol. 63, 209-22, 2006.
doi:10.2528/PIER06052401

13. Elsabbagh, M. A., "Analytical dielectric constant sensitivity of ridge waveguide filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 375-388, 2006.
doi:10.1163/156939306775701713

14. Guo, S., S. Albin, and R. S. Rogowski, "Comparative analysis of Bragg fibers," Opt. Express, Vol. 12, 198-207, 2004.
doi:10.1364/OPEX.12.000198

15. Pal, B. P., S. Dasgupta, and H. R. Shenoy, "Bragg fiber design for transparent metro networks," Opt. Express, Vol. 13, 621-626, 2005.
doi:10.1364/OPEX.13.000621

16. Vivek, S., B. Prasad, and S. P. Ojha, "Analysis of the modal characteristics of a Bragg fiber with a small number of claddings using a simple analytical approach," Microwave Opt. Technol. Lett., Vol. 46, No. 3, 271-275, 2005.
doi:10.1002/mop.20963

17. Prajapati, Y., V. Singh, and J. P. Saini, "Modal analysis of a super elliptical Bragg waveguide with a small number of periodic cladding layers based on a very simple analytical technology," Optik, 2007.

18. Vivek, S., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.

19. Prokopovich, D. V., A. V. Popov, and A. V. Vinogradov, "Analytical andn umerical aspects of Bragg fiber design," Progress In Electromagnetics Research B, Vol. 6, 361-379, 2008.
doi:10.2528/PIERB08031221

20. Vivek, S., B. Prasad, and S. P. Ojha, "Weak guidance modal analysis and dispersion curves of an infrared-lightguide having a core cross-section with a new type of asymmetric loop boundary," Optical Fiber Technology, Vol. 6, 290-298, 2000.
doi:10.1006/ofte.2000.0329

21. Vivek, S., M. Joshi, B. Prasad, and S. P. Ojha, "Modal dispersion characteristics and waveguide dispersion of an optical waveguide having a new unconventional core cross-section," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 455-468, 2004.
doi:10.1163/156939304774113061

22. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "An optical waveguide with a hypocycloidal core cross-section having a conducting sheath helical winding on the core cladding boundary --- A comparative modal dispersion study vis-a-vis standard fiber with a sheath winding," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1307-1326, 2005.
doi:10.1163/156939305775525846

23. Vivek, S., S. N. Maurya, B. Prasad, and S. P. Ojha, "Conducting sheath helical winding on the core-cladding interface of a lightguide having a Piet Hein core cross-section and a standard optical fiber of circular cross-section-a comparative study," Progress In Electromagnetics Research, Vol. 59, 231-249, 2006.

24. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "Modal analysis and waveguide dispersion of an optical waveguide having a cross section of the shape of a cardiod," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1021-1035, 2006.
doi:10.1163/156939306776930277

25. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2005.

26. Liu, L., K. Li, and W.-Y. Pan, "Electromagnetic field from a vertical electric dipole in a four-layered region," Progress In Electromagnetics Research B, Vol. 8, 213-241, 2008.
doi:10.2528/PIERB08062108

27. Gavdner, W. B., "Microbend loss in optical fibers," Bell Sys. Tech. J., Vol. 54, 457-465, 1975.

28. Suhir, E., "Effect of initial curvature on low temperature microbending of optical fiber," J. Lightwave Tech., Vol. 6, 1321-1327, 1988.
doi:10.1109/50.4137