Vol. 86
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-07
An Impulse-Radio-Based Ultrawideband RF Front-End Module with a New Multilayered Microwave Sampler
By
Progress In Electromagnetics Research, Vol. 86, 1-18, 2008
Abstract
In this paper we develop a new impulse-radio-based RF front-end module for ultrawideband communications. The proposed transceiving module is designed based a novel compact microwave sampler. The microwave sampler consists of a multilayered magic-T and a balanced sampling bridge. By utilizing a wideband microstripto-slotline Marchand balun, the newly proposed magic-T features an improved bandwidth of 94.2%. The design concept, circuit topology, and experimental results of the magic-T and microwave sampler are investigated in the first half of this paper. By utilizing the equivalent time sampling theory, in the second half of this paper we investigate an impulse-radio-based ultrawideband transceiving front-end module. Two transmission data rates, 90 and 270 Kbps, are demonstrated with various bit patterns. The experimental results reveal that the transceiving module has a coverage range up to 4.5 m. The circuit configuration, modulation scheme, and system performance of the front-end module are discussed thoroughly. The tradeoff for increasing the data rate is discussed at the end of this paper as well.
Citation
Tzyh-Ghuang Ma Chin-Jay Wu Chin-Feng Chou , "An Impulse-Radio-Based Ultrawideband RF Front-End Module with a New Multilayered Microwave Sampler," Progress In Electromagnetics Research, Vol. 86, 1-18, 2008.
doi:10.2528/PIER08090501
http://www.jpier.org/PIER/pier.php?paper=08090501
References

1. Aiello, G. R. and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave, Vol. 4, No. 2, 36-47, June 2003.
doi:10.1109/MMW.2003.1201597

2. Yang, L. and G. B. Giannakis, "Ultra-wideband communications: An idea whose time has come," IEEE Signal Processing Magazine, Vol. 21, No. 6, 26-54, Nov. 2004.
doi:10.1109/MSP.2004.1359140

3. Fang, C., Y. Zheng, and C. L. Law, "An ultra wideband transmitter based on up conversion architecture," Proc. IEEE Int. Workshop on Radio-frequencyInte gration Tech., 38-41, Singapore, Nov. 2005.

4. Ma, T. G. and C. F. Chou, "A compact multilayered magic-T in microstrip form and its application to microwave sampler," 2008 IEEE Int. Microw. Symp. Dig., 887-890, Atlanta GA, June 2008.

5. Remley, A. and D. F. Williams, "Sampling oscilloscope models and calibrations," 2003 IEEE Int. Microwave Symp. Dig., Vol. 1507, No. 1510, Philadelphia, PA, July 2003.

6. Lawton, R., S. Riad, and J. Andrews, "Pulse & time-domain measurements," Proc. IEEE, Vol. 74, 77-81, Jan. 1986.
doi:10.1109/PROC.1986.13406

7. Madnani, K. and C. S. Aitchison, "A 20 GHz microwave sampler," IEEE Trans. on Microw. Theory Tech., Vol. 40, No. 10, 1960-1963, Oct. 1992.
doi:10.1109/22.159634

8. Madani, K., "A hybrid 0.5–20 GHz microwave sampler," IEE Colloquium on Multi-octave Microw. Circuits, 3/1-3/4, London, UK, Nov. 1991.

9. Han, J. and C. Nguyen, "Coupled-slotline-hybrid sampling mixer integrated with step-recovery-diode pulse generator for UWB applications," IEEE Trans. on Microw. TheoryT ech., Vol. 53, No. 6, 1875-1882, June 2005.
doi:10.1109/TMTT.2005.848091

10. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel enhanced and miniaturized 90o coupler for 3G EH mixers," Progress In Electromagnetics Research Letters, Vol. 3, 43-50, 2008.
doi:10.2528/PIERL08012702

11. Ohm, J. and M. Alberty, "Microwave phase detectors for PSK demodulators," IEEE Trans. on Microw. Theory Tech., Vol. 29, No. 7, 724-731, July 1981.
doi:10.1109/TMTT.1981.1130435

12. Stec, B., C. Recko, and W. Susek, "Multibit microwave frequency discriminators," Proc. 2006 Int. Conference on Microw., Radar & Wireless Communications, 240-242, May 2006.
doi:10.1109/MIKON.2006.4345159

13. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2005.

14. Kim, J. P. and W. S. Park, "Novel configurations of planar multilayer magic-T using microstrip-slotline transitions," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1683-1688, 2002.
doi:10.1109/TMTT.2002.800387

15. U-yen, K., E. J. Wollack, J. Papapolymerou, and J. Laskar, "A broadband planar magic-T using microstrip-slotline transitions," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 172-177, Jan. 2008.
doi:10.1109/TMTT.2007.912213

16. Fan, L., C.-H. Ho, S. Kanamaluru, and K. Chang, "Wideband reduced uniplanar magic-T, hybrid-ring, and de Ronde's CPW-slot couplers," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 12, 2749-2758, Dec. 1995.
doi:10.1109/22.475631

17. Gruszczynski, S., K. Wincza, and K. Sachse, "Design of compensated coupled-stripline 3-dB directional couplers, phase shifters and magic-Ts (Part II: Broadband coupled-line circuits)," IEEE Trans. Microw Theory Tech., Vol. 54, No. 9, 3501-3507, Sept. 2006.
doi:10.1109/TMTT.2006.880649

18. Wang, Z.-X., W. B. Dou, and Z.-L. Mei, "A compact H-plane magic tee designed at W band," Progress In Electromagnetics Research B, Vol. 5, 35-48, 2008.
doi:10.2528/PIERB08011706

19. Katsube, M. W., Y. M. M. Anter, A. Ittipiboon, and M. Cuhaci, "A novel aperture coupled microstrip magic-T," IEEE Microw. Guided Wave Lett., Vol. 2, No. 6, 245-246, June 1992.
doi:10.1109/75.136520

20. Davidovitz, M., "A compact planar magic-T junction with aperture-coupled difference port," IEEE Microw. Guided Wave Lett., Vol. 7, No. 8, 217-218, Aug. 1997.
doi:10.1109/75.605482

21. Fan, Z., L.-X. Ran, and J. A. Kong, "Source pulse optimizations for UWB radio systems," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1535-1550, 2006.
doi:10.1163/156939306779274309

22. Hall, R., S. Hamilton, and S. Krakauer, "Impulse-shunt made harmonic generation," Proc. 1966 ISSCC, 66-67, 1966.

23. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A planar U type monopole antenna for UWB applications," Progress In Electromagnetics Research Letters, Vol. 2, 1-10, 2008.
doi:10.2528/PIERL07121405

24. Gopikrishna, M., D. D. Krishna, A. R. Chandran, and C. K. Aanandan, "Square monopole antenna for ultra wide band communication applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1525-1537, 2007.