1. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of an oscillator with distributed element resonator," Progress In Electromagnetics Research, Vol. 80, 241-252, 2008.
doi:10.2528/PIER07111701 Google Scholar
2. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of microwave oscillators using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
doi:10.2528/PIER07100101 Google Scholar
3. Shi, Z.-G., S. Qiao, and K. S. Chen, "Ambiguity functions of direct chaotic radar employing microwave chaotic colpitts oscillator," Progress In Electromagnetics Research, Vol. 77, 1-14, 2007.
doi:10.2528/PIER07072001 Google Scholar
4. Mokari, H. and P. Derakhshan-Barjoei, "Numerical analysis of homojunction gallium arsenide avalanche," Progress In Electromagnetics Research B, Vol. 7, 159-172, 2008. Google Scholar
5. Seyedi, M. H., "Numerical analysis of homojunction avalanche photodiodes (APDS)," Progress In Electromagnetics Research C, Vol. 3, 45-56, 2008. Google Scholar
6. Akbarzade, M., D. D. Ganji, and M. H. Pashaei, "Analysis of nonlinear oscillators with U force by He’s energy balance method," Progress In Electromagnetics Research C, Vol. 3, 57-66, 2008. Google Scholar
7. Zhang, H., J. Wang, and C. Tong, "Progress in theoretical design and numerical simulation of high power terahertz backward wave oscillator," PIERS Online, Vol. 4, No. 3, 311-315, 2008.
doi:10.2529/PIERS071001065701 Google Scholar
8. Lin, M.-C. and P.-S. Lu, "An injection-locked millimeter wave oscillator based on field-emission cathodes," PIERS Online, Vol. 4, No. 3, 371-375, 2008.
doi:10.2529/PIERS070906183455 Google Scholar
9. Peidaee, P. and A. Baghai-Wadji, "On the calculation of polynomially perturbed harmonic oscillators," PIERS Online, Vol. 3, No. 4, 485-489, 2007.
doi:10.2529/PIERS061202155000 Google Scholar
10. Lin, M.-C. and P. S. Lu, "Interaction mechanism of a field emission based THz oscillator," PIERS Online, Vol. 3, No. 7, 1011-1015, 2007.
doi:10.2529/PIERS061007104929 Google Scholar
11. Shi, Z. G. and L. X. Ran, "Microwave chaotic Colpitts activate the application," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1335-1349, 2006.
doi:10.1163/156939306779276802 Google Scholar
12. Agarwal, P., M. J. Goossens, V. Zieren, and E. Aksen, "Impact ionization in thin silicon diodes," IEEE Electron. Device Letters, Vol. 25, No. 12, 807-809, 2004.
doi:10.1109/LED.2004.838557 Google Scholar
13. Schoellhorn, C. J. and M. Morschbach, "S-parameter measurements of the impedance of mm-wave IMPATT diodes in dependency on the current density," Journal of Microwaves and Optoelectronics, Vol. 3, No. 5, 81-96, 2004. Google Scholar
14. Rolland, P. A., J. L. Vaterkowski, E. Constant, and G. Salmer, "New modes of operation for avalanche diodes: Frequency multiplication and upconversion," IEEE Trans. Microwave Theory Tech., Vol. 24, 768-775, 1976.
doi:10.1109/TMTT.1976.1128958 Google Scholar
15. Constant, E., E. Allamando, and A. Semichon, "Transit-time operation of an avalanche diode driven by a subharmonic signal and its application to frequency multiplication," Proceeding of the IEEE, Vol. 58, 483-484, 1970.
doi:10.1109/PROC.1970.7662 Google Scholar
16. Ermak, G. P. and A. V. Varavin, "2-mm wave vector network analyzer upon high-order IMPATT multipliers," International Journal of Infrared and Millimeter Waves, Vol. 27, 681-686, 2006.
doi:10.1007/s10762-006-9111-x Google Scholar
17. Ermak, G. P., A. V. Varavin, and E. A. Alekseev, "Phase locking of 2-mm wave sources upon high-order IMPATT multipliers," International Journal of Infrared and Millimeter Waves, Vol. 24, 1609-1615, 2003.
doi:10.1023/A:1026079116516 Google Scholar
18. Huang, J., T. Gan, and Y. Zou, "A novel W-band fully coherent solid-state radar transceiver," Proceedings of 2001 CIE International Conference on Radar, 907-911, 2001. Google Scholar
19. Rolland, P. A., G. Salmer, A. Derycke, and J. Michel, "Very-high-rank avalanche diode frequency multiplier," Proceedings of the IEEE, Vol. 61, 1757-1758, 1973.
doi:10.1109/PROC.1973.9365 Google Scholar
20. Rolland, P. A., E. Constant, A. Derycke, and J. Michel, "Multiplication de frequence par diode a avalanche en ondes millimetriques," Acts Electronics, Vol. 17, 213-228, 1974. Google Scholar
21. Kramer, B. M., A. C. Derycke, A. Farrayre, and C. F. Masse, "High-efficiency frequency multiplication with GaAs avalanche diodes," IEEE Trans. Microwave Theory Tech., Vol. 24, 861-863, 1976.
doi:10.1109/TMTT.1976.1128976 Google Scholar
22. Venger, A. Z., A. N. Ermak, and A. M. Yakimenko, "Frequency multiplier based on an avalanche-and-transit diode," Instruments and Experimental Techniques, Vol. 23, 691-692, 1980. Google Scholar
23. Zhao, M., Y. Fan, and Y. Zhang, "The W-band high order avalanche diode frequency multipliers," International Journal of Infrared and Millimeter Waves, Vol. 28, 663-669, 2007.
doi:10.1007/s10762-007-9238-4 Google Scholar
24. Haddad, G. I., P. T. Greiling, and W. E. Schroeder, "Basic principles and properties of avalanche transit-time devices," IEEE Trans. Microwave Theory Tech., Vol. 18, 752-772, 1970.
doi:10.1109/TMTT.1970.1127352 Google Scholar
25. Read, W. T., "A proposed high frequency negative resistance diode," Bell System Tech. Journal, Vol. 37, 400-446, 1958. Google Scholar
26. Gilden, M. and M. E. Hines, "Electronic tuning effects in the read microwave avalanche diode," IEEE Transactions on Electron. Devices, Vol. 13, 169-175, 1966.
doi:10.1109/T-ED.1966.15652 Google Scholar
27. Sze, S. M., Physics of Semiconductor Devices, 3rd Ed., Wiley, 2006.
28. De La Cruz, R. and A. Zemliak, "Characteristics of the double avalanche region IMPATT diode in millimetric range," Proceedings of the 14th International Conference on Electronics, Communications and Computers, 223-227, February 16-18 2004. Google Scholar
29. Gannett, J. and L. Chua, "A nonlinear circuit model for IMPATT diodes," IEEE Transactions on Circuits and Systems, Vol. 25, No. 5, 299-308, 1978.
doi:10.1109/TCS.1978.1084476 Google Scholar
30. Zhao, M., Y. Fan, and Y. Zhang, "A nonlinear circuit model for avalanche diode in high order frequency multiplication mode," 5th International Conference on Microwave and Millimeter Wave Technology, 560-562, 2007. Google Scholar