1. Rocca, P., L. Manica, and A. Massa, "An effective excitation matching method for the synthesis of optimal compromises between sum and difference patterns in planar arrays," Progress In Electromagnetics Research B, Vol. 3, 115-130, 2008.
doi:10.2528/PIERB07120403 Google Scholar
2. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206 Google Scholar
3. Qu, Y., G. S. Liao, S. Q. Zhu, X. Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306 Google Scholar
4. Qu, Y., G. S. Liao, S. Q. Zhu, and X. Y. Liu, "Pattern synthesis of planar antenna array via convex optimization for airborne forward looking radar," Progress In Electromagnetics Research, Vol. 84, 1-10, 2008.
doi:10.2528/PIER08060301 Google Scholar
5. Sabry, R. and P. W. Vachon, "Advanced polarimetric Synthetic Aperture Radar (SAR) and Electro-Optical (EO) data fusion through unified coherent formulation of the scattered EM field," Progress In Electromagnetics Research, Vol. 84, 189-203, 2008.
doi:10.2528/PIER08071005 Google Scholar
6. Zang, W., Z. G. Shi, S. C. Du, and K. S. Chen, "Novel roughening method for reentry vehicle tracking using particle filter," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1969-1981, 2007.
doi:10.1163/156939307783152975 Google Scholar
7. Mahanti, G. K., A. Chakraborty, and S. Das, "Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 97-106, 2007.
doi:10.1163/156939307779391768 Google Scholar
8. Shi, Z. G., S. Qiao, and K. S. Chen, "Detection and localization of RF radar pulses in noise environments using wavelet packet transform and higher order statistics," Progress In Electromagnetics Researc, Vol. 58, 301-317, 2006. Google Scholar
9. Soliman, M. S., T. Morimoto, and Z. I. Kawasaki, "Three dimensional localization system for impulsive noise sources using ultra wideband digital interferometer technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027 Google Scholar
10. Singh, A. K., P. Kumar, T. Chakravarty, G. Singh, and S. Bhooshan, "A novel digital beamformer with low angle resolution for vehicle tracking radar," Progress In Electromagnetics Research, Vol. 66, 229-237, 2006.
doi:10.2528/PIER06112102 Google Scholar
11. Li, N., "Radar ECCM’s new area: Anti-STEALTH and anti-ARM," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 3, July 1995. Google Scholar
12. Lian, W., "Discussion of radar anti anti-radiation missile technology — Alarming plus decoy system," International Radar Conference,CIE 2001, 2001. Google Scholar
13. Wang, F., R. He, and X. Sha, "Anti-ARMtec hnique: Feature analysis of ARM warning radar," International Radar Conference, CIE 2001, 2001. Google Scholar
14. Schindler, J. K., "Netted search radar system," U. S. Pat., No. 4347513, Aug. 31 1982. Google Scholar
15. Manoogian, D. V., B. H. Labitt, and J. R. Wood, "Transmitter peak power efficient pseudo-blink ARM decoy system," U. S. Pat., No. 4433333, Feb. 21 1984. Google Scholar
16. Atar, D., "Operation of a decoy against threats," U. S. Pat., No. 6833804, Dec. 21 2004. Google Scholar
17. Manoogian, D. V., "Missile decoy system," U. S. Pat., No. 4990919, Feb. 5 1991. Google Scholar
18. Rougas, J. A., "Anti-Radar Missile (ARM) countermeasure method," U. S. Pat., No. 6414622, July 2 2002. Google Scholar
19. Skolnik, M. I., Introduction to Radar Systems, McGraw-Hill, 2002.
20. Dunn, J. H. and D. D. Howard, "Radar target amplitude, angle, and Doppler scintillation from analysis of the echo signal propagation in space," IEEE Trans. on Microwave Theory and Techniques, Vol. 6, No. 9, 715-728, Sept. 1968.
doi:10.1109/TMTT.1968.1126776 Google Scholar
21. Kanter, I., "Varieties of average monopulse responses to multiple targets," IEEE Trans. on Aerospace and Electronic Systems, Vol. 17, No. 1, 25-28, Jan. 1981.
doi:10.1109/TAES.1981.309032 Google Scholar
22. Kanter, I., "Multiple Gaussian targets: The track-on-jam problem," IEEE Trans. on Aerospace and Electronic Systems, Vol. 13, No. 6, 620-623, Nov. 1977.
doi:10.1109/TAES.1977.308502 Google Scholar
23. Patel, P. and J. Holtzman, "Analysis of a simple successive interference cancellation scheme in a DS/CDMA system," IEEE J. Select. Areas Commun., Vol. 12, No. 5, 796, June 1994.
doi:10.1109/49.298053 Google Scholar
24. Elders-Boll, H., M. Herper, and A. Busboom, "Adaptive receivers for mobile DS-CDMA communication systems," Proc. of IEEE Vehicular Technology Conference, Vol. 3, May 1997. Google Scholar
25. Elders-Boll, H., A. Busboom, and H. D. Schotten, "Spreading sequences for zero-forcing DS-CDMA multiuser detectors," Proc. of 8th IEEE International Symposium, PIMRC'97, Sept. 1997. Google Scholar
26. Guo, D., L. K. Rasmussen, S. Sumei, T. J. Lim, and C. Cheah, "MMSE-based linear parallel interference cancellation in CDMA," Proc. of IEEE International Symposium Spread Spectrum Techniques and Appl., Sept. 1998. Google Scholar
27. Rasmussen, L. K., Y. Ma, D. Guo, and T. J. Lim, "Aspects on linear parallel interference cancellation in CDMA," Proc. of IEEE International Symposium Informormation Theory, 37, Aug. 1998. Google Scholar
28. Grant, A. and C. Schlegel, "Iterative implementation for linear multiuser detectors,", 1999. Google Scholar