1. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enenclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 240-248, Aug. 1998.
doi:10.1109/15.709422 Google Scholar
2. Dehkhoda, P., A. Tavakoli, and R. Moini, "An efficient and reliable shielding effectiveness evaluation of a rectangular enclosure with numerous apertures," IEEE Trans. Electromag. Compat., Vol. 50, No. 1, 208-212, Feb. 2008.
doi:10.1109/TEMC.2007.911922 Google Scholar
3. Bahadorzadeh, M. and M. N. Moghaddasi, "Improving the shielding effectiveness of a rectangular metallic enclosure with aperture by using extra shielding wall," Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008.
doi:10.2528/PIERL07110706 Google Scholar
4. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301 Google Scholar
5. Matsushima, A., Y. Nakamura, and S. Tomino, "Application of integral equation method to metal-plate lens structures," Progress In Electromagnetics Research, Vol. 54, 245-262, 2005.
doi:10.2528/PIER05011401 Google Scholar
6. Nie, X. C. and N. Yuan, "Accurate modeling of monopole antennas in shielded enclosures with apertures," Progress In Electromagnetics Research, Vol. 79, 251-262, 2008.
doi:10.2528/PIER07100403 Google Scholar
7. Wei, X. C., E. P. Li, and C. H. Liang, "Fast solution for large scale electromagnetic scattering problems using wavelet transform and its precondition," Progress In Electromagnetics Research, Vol. 38, 253-267, 2002.
doi:10.2528/PIER02042602 Google Scholar
8. Edrisi, M. and A. Khodabakhshian, "Simple methodology for electric and magnetic shielding effectiveness computation of enclosures for electromagnetic compatibility use," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1051-1060, 2006.
doi:10.1163/156939306776930312 Google Scholar
9. Ojeda, X. and L. Pichon, "Combining the finite element method and Pade approximation for scattering analysis application to radiated electromagnetic compatibility problems," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1375-1390, 2005.
doi:10.1163/156939305775525918 Google Scholar
10. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 82-112, 2007. Google Scholar
11. Barkeshli, K. and J. L. Volakis, "Scattering from narrow grooves and slits," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1–4, 459-474, 1992. Google Scholar
12. Robertson, J., E. A. Parker, B. Sanz-Izquierdo, and J. C. Batchelor, "Electromagnetic coupling through arbitrary apertures in parallel conducting planes," Progress In Electromagnetics Research B, Vol. 8, 29-42, 2008. Google Scholar
13. Jiao, C., X. Cui, L. Li, and H. Li, "Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture," IEEE Trans. Magnetics, Vol. 42, No. 4, 1075-1078, Apr. 2006.
doi:10.1109/TMAG.2006.871638 Google Scholar
14. Edelvik, F. and T. Weiland, "Stable modeling of arbitrarily oriented thin slots in the FDTD method," IEEE Trans. Electromag. Compat., Vol. 47, No. 3, 440-446, Aug. 2005.
doi:10.1109/TEMC.2005.853160 Google Scholar
15. Wang, J. and W. J. Koh, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701 Google Scholar
16. Paul, J., V. Podlozny, and C. Christopoulos, "The use of digital filtering techniques for the simulation of fine features in EMC problems solved in the time domain," IEEE Trans. Electromag. Compat., Vol. 45, No. 2, 238-244, May 2003.
doi:10.1109/TEMC.2003.810810 Google Scholar
17. Podlozny, V., C. Christopoulos, and J. Paul, "Efficient description of fine features using digital filters in time-domain computational electromagnetics," IEE Proceedings — Science, Measurement and Technology, Vol. 149, No. 5, 254-257, Sept. 2002.
doi:10.1049/ip-smt:20020541 Google Scholar
18. Park, H. H. and H. J. Eom, "Electromagnetic penetration into a rectangular cavity with multiple rectangular apertures in a conducting plane," IEEE Trans. Electromag. Compat., Vol. 42, No. 3, 303-307, Aug. 2000.
doi:10.1109/15.865338 Google Scholar
19. Chen, C. C., "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave. Theory Tech., Vol. 21, No. 1, 1-6, Jan. 1973.
doi:10.1109/TMTT.1973.1127906 Google Scholar
20. Belokour, I., J. LoVetri, and S. Kashyap, "A higher-order mode transmission line model of the shielding effectiveness of enclosures with apertures," IEEE Int. Symp. Electromag. Compat., 702-707, Aug. 13–17, 2001. Google Scholar
21. Shim, J. J., D. G. Kam, J. H. Kwon, H. D. Choi, and J. Kim, "Circuital approach to evaluate shielding effectiveness of rectangular enclosures with apertures on multiple sides," EMC Europe 2004, Int. Symp. Electromag. Compat., Eindhoven, The Netherlands, Sept. 6–10, 2004. Google Scholar
22. Dan, S., S. Yuanmao, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," IEEE Int. Symp. Electromag. Compat., 361-364, 2007. Google Scholar
23. http://techreports.larc.nasa.gov/ltrs/PDF/2000/cr/NASA-2000-cr210 297.pdf, July 2006.
24. Dehkhoda, P., A. Tavakoli, and R. Moini, "Shielding effectiveness of a rectangular enclosure with finite wall thickness and rectangular apertures by the generalized modal MoM," IET Science, Measurement and Technology. Google Scholar