1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Caloz, C. and T. Itoh, "Metamaterials for high-frequency electronics," Proc. IEEE, Vol. 93, No. 10, 1744-1751, 2005.
doi:10.1109/JPROC.2005.853540 Google Scholar
3. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
4. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
5. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
6. Cummer, S. A., "Simulated causal subwavelengthfo cusing by a negative refractive index slab," Appl. Phys. Lett., Vol. 82, 1503-1505, 2003.
doi:10.1063/1.1554778 Google Scholar
7. Rao, X. S. and C. K. Ong, "Subwavelengthimaging by a left-handed material superlens," Phys. Rev. E, Vol. 68, 0676011-3, 2003. Google Scholar
8. Fang, N. and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett., Vol. 82, 161-163, 2003.
doi:10.1063/1.1536712 Google Scholar
9. Feise, M. W. and Y. S. Kivshar, "Sub-wavelength imaging with a left-handed material flat lens," Phys. Lett. A, Vol. 334, 326-330, 2005.
doi:10.1016/j.physleta.2004.11.031 Google Scholar
10. Yu, G. X. and T. J. Cui, "Imaging and localization properties of LHM superlens excited by 3D horizontal electric dipoles," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 35-46, 2007.
doi:10.1163/156939307779391795 Google Scholar
11. Lagarkov, A. N. and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett., Vol. 92, 774011-4, 2004. Google Scholar
12. Parimi, P., W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature, Vol. 426, 404, 2003.
doi:10.1038/426404a Google Scholar
13. Grbic, A. and G. V. Eleftheriades, "Overcoming the diffraction limit witha planar left-handed transmission-line lens," Phys. Rev. Lett., Vol. 92, 1174031-4, 2004.
doi:10.1103/PhysRevLett.92.117403 Google Scholar
14. Ran, L. X., J. Huangfu, H. Chen, X. M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502 Google Scholar
15. Aydin, K., I. Bulu, and E. Ozbay, "Focusing of electromagnetic waves by a left-handed metamaterial flat lens," Opt. Express, Vol. 13, 8753-8759, 2005.
doi:10.1364/OPEX.13.008753 Google Scholar
16. Wang, G., J. Fang, and X. T. Dong, "Resolution of near-field target detection and imaging by using flat LHM lens," IEEE Trans. Antennas Propagat., Vol. 55, No. 12, 3534-3541, 2007.
doi:10.1109/TAP.2007.910365 Google Scholar
17. Wang, G., J. Fang, and X. T. Dong, "Refocusing of backscattered microwaves in target detection by using LHM flat lens," Opt. Express, Vol. 15, No. 6, 3312-3317, 2007.
doi:10.1364/OE.15.003312 Google Scholar
18. Chen, L., S. He, and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett., Vol. 92, No. 10, 107404-1-4, 2004. Google Scholar
19. Chen, J. J., T. M. Grzegoczyk, B.-I. Wu, and J. A. Kong, "Imaging properties of finite-size left-handed material slabs," Phys. Rev. E, Vol. 74, 046615, 2006.
doi:10.1103/PhysRevE.74.046615 Google Scholar
20. Kissel, V. N. and A. N. Lagarkov, "Superresolution in left-handed composite structures: From homogenization to a detailed electrodynamic description," Phys. Rev. B, Vol. 72, 085111, 2005.
doi:10.1103/PhysRevB.72.085111 Google Scholar