Vol. 89
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-12-31
An Improved Two-Scale Model with Volume Scattering for the Dynamic Ocean Surface
By
Progress In Electromagnetics Research, Vol. 89, 39-56, 2009
Abstract
The effects of the surface slopes joint probability density, the shadowing function, the skewness of sea waves and the curvature of the surface on the backscattering from the ocean surface are discussed and an improved two-scale model modified by these four aspects is used to calculate the backscattering coefficient of the dynamic ocean surface. In order to deal with the surface skewness driven by wind, a new complementary term derived from the small perturbation method is included in the improved model, in which the Fourier transform of the third-order cumulant function, surface bispectrum, is employed. On this basis, with the oceanic whitecap coverage taken into account, a composite model for predicting the ocean surface backscattering coefficient is constructed tentatively, which incorporates the volume scattering into the total one. Finally, with the vector radiative transfer (VRT) theory employed, numerical illustrations are carried out for the backscattering coefficients versus wind speed, incidence angle and azimuth angle, respectively. The predictions of the composite model are verified in Ku- and Ka-bands through the comparison of numerical results with many sets of measured data and the aircraft measurement experiment carried out in ZHOUSHAN sea area also supports this model.
Citation
Zhen-Sen Wu, Jin-Peng Zhang, Li-Xin Guo, and Ping Zhou, "An Improved Two-Scale Model with Volume Scattering for the Dynamic Ocean Surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803
References

1. Wright, J. W., "A new model for sea clutter," IEEE Trans. Antennas Propagat., Vol. 16, No. 2, 217-223, 1968.
doi:10.1109/TAP.1968.1139147

2. Valenzuela, G. R., "Theories for the interaction of electromagnetic and oceanic waves — A review," Boundary-layer Meteorology, Vol. 13, 61-85, 1978.
doi:10.1007/BF00913863

3. Fung, A. K. and K. K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE J. Ocean. Eng., Vol. 7, No. 4, 166-176, 1982.
doi:10.1109/JOE.1982.1145535

4. Fung, A. K. and N. C. Kuo, "Backscattering from multi-scale and exponentially correlated surfaces," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 3-11, 2006.
doi:10.1163/156939306775777378

5. Fung, A. K. and K. S. Chen, "Kirchhoff model for a skewed random surface," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 1, 205-216, 1991.

6. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing-active and Passive, Vol. 2, Addision-Wesbey Pu. Co., 1982.

7. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Vol. 1, Wiley-Interscience, New York, 2000.

8. Guissard, A., "Multispectra for ocean-like random rough surface scattering," Journal of Electromagnetic Waves and Applications, Vol. 10, 1413-1443, 1996.
doi:10.1163/156939396X00162

9. McDaniel, S. T., "Microwave backscatter from non-Gaussian seas," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 1, 52-58, 2003.
doi:10.1109/TGRS.2002.808069

10. Soriano, G. and C. A. Guerin, "A cutoff invariant two-scale model in electromagnetic scattering from sea surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 5, No. 2, 199-203, 2008.
doi:10.1109/LGRS.2008.915746

11. Wang, Y.-H., L.-X. Guo, and Z.-S.Wu, "Modified two-scale model for electromagnetic scattering from the non-Gaussian oceanic surface," Chinese Physics Letters, Vol. 22, No. 11, 2808-2811, 2005.
doi:10.1088/0256-307X/22/11/023

12. Droppleman, J. D., "Apparent microwave emissivity of sea foam," J. Geophys. Res., Vol. 75, No. 3, 696-698, 1970.
doi:10.1029/JC075i003p00696

13. Rosenkranz, P. W. and D. H. Stealin, "The microwave emissivity of ocean foam and its effect on nadiral radiometric measurements," J. Geophys. Res., Vol. 77, No. 33, 6528-6538, 1972.
doi:10.1029/JC077i033p06528

14. Chen, D., L. Tsang, et al. "Microwave emission and scattering of foam based on Monte Carlo simulations of dense media," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 4, 782-790, 2003.
doi:10.1109/TGRS.2003.810711

15. Huang, X.-Z. and Y.-Q. Jin, "Scattering and emission from two-scale randomly rough sea surface with foam scatterers," IEE Proc. Microw. Antennas Propag., Vol. 142, No. 2, 109-114, 1995.
doi:10.1049/ip-map:19951765

16. Guo, L.-X. and Z.-S. Wu, "Application of the extended boundary condition method to electromagnetic scattering from rough dielectric fractal sea surface," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1219-1234, 2004.
doi:10.1163/1569393042955342

17. Guo, J. J., L. Tsang, et al. "Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 1019-1027, 2001.
doi:10.1109/36.921420

18. Chen, K. S., A. K. Fung, J. C. Shi, and H. W. Lee, "Interpretation of backscattering mechanisms from non-gaussian correlated randomly rough surfaces," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 105-118, 2006.
doi:10.1163/156939306775777404

19. Smirnov, A. V., I. M. Fuks, and K. A. Naugolnykh, "Crosswind ocean radar backscatter and two-scale scattering model at low grazing angles," Radio Science, Vol. 38, No. 2, 8037-8044, 2003.
doi:10.1029/2002RS002672

20. Bourlier, C., G. Berginc, and J. Saillard, "One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 312-324, 2002.
doi:10.1109/8.999622

21. Voronovich, A. G., "On the theory of electromagnetic waves scattering from the sea surface at low grazing angles," Radio Science, Vol. 31, No. 6, 1519-1530, 1996.
doi:10.1029/96RS02250

22. Chen, K. S. and A. K. Fung, "A Bragg scattering model for skewed sea surface," OCEANS’90. `Engineering in the Ocean Environment'. Conference Proceedings, 249-252, 1990.
doi:10.1109/OCEANS.1990.584769

23. Chen, K. S., A. K. Fung, and D. E. Weissman, "A backscattering model for ocean surface," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 4, 811-817, 1992.
doi:10.1109/36.158877

24. Jin, Y.-Q., "Some results from the radiative wave equation for a slab of randomly, densely-distributed scatterers," J. Quant. Spectr. Radiat. Transfer, Vol. 39, No. 2, 83-98, 1988.
doi:10.1016/0022-4073(88)90076-3

25. Schroeder, L. C., et al. "The relationship between wind vector and normalized radar cross section used to derive SEASAT-A satellite scatterometer winds," J. Geophys. Res., Vol. 87, No. C5, 3318-3336, 1982.
doi:10.1029/JC087iC05p03318

26. Zhou, P., et al. "Results of airborne measurement of sea surface backscattering and analysis," Systems Engineering and Electronics, Vol. 28, No. 3, 325-328, 2006.