1. Livesay, D. E. and K. M. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies," IEEE Trans. on MTT , Vol. 22, 1273-1280, 1974.
doi:10.1109/TMTT.1974.1128475 Google Scholar
2. Schaubert, D., D. Wilton, and A. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Transactions on Antennas and Propagation , Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193 Google Scholar
3. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, Apr. 2005.
4. Nie, X.-C., N. Yuan, L.-W. Li, T. S. Yeo, and Y.-B. Gan, "Fast analysis of electromagnetic transmission through arbitrarily shaped airborne radomes using precorrected-FFT method," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601 Google Scholar
5. Li, L.-W., Y.-J. Wang, and E.-P. Li, "MPI-based parallelized precorrected FFT algorithm for analyzing scattering by arbitrarily shaped three-dimensional objects," Progress In Electromagnetics Research, Vol. 42, 247-259, 2003.
doi:10.2528/PIER03030701 Google Scholar
6. Volakis, J. L. and K. Barkeshli, "Applications of the conjugate gradient FFT method to radiation and scattering," Progress In Electromagnetics Research, Vol. 05, 159-239, 1991. Google Scholar
7. Peterson, A. F., S. L. Ray, C. H. Chen, and R. Mittra, "Numerical implementations of the conjugate gradient method and the CGFFT for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 05, 241-300, 1991. Google Scholar
8. Gago, E. and M. F. Catedra, "Analysis of finite sized conducting patches in multilayer media using the CG-FFT method and discretizing Green's function in the spectral domain," Progress In Electromagnetics Research, Vol. 05, 301-327, 1991. Google Scholar
9. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems," Journal of Electromagnetic Waves and Applications, Vol. 9, 1339-1357, 1995. Google Scholar
10. Xin, Y. F. and P.-L. Rui, "Adaptively accelerated GMRES fast fourier transform method for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 81, 303-314, 2008.
doi:10.2528/PIER08011603 Google Scholar
11. Rui, P.-L. and R.-S. Chen, "Implicitly restarted GMRES fast Fourier transform method for electromagnetic scattering," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 7, 973-986, 2007.
doi:10.1163/156939307780748968 Google Scholar
12. Fan, Z. H., D. X. Wang, R. S. Chen, and E. K. N. Yung, "The application of iterative solvers in discrete dipole approximation method for computing electromagnetic scattering," Microwave and Optical Technology Letters, Vol. 48, No. 9, 1741-1746, Sep. 2006.
doi:10.1002/mop.21760 Google Scholar
13. Rui, P. L., R. S. Chen, Z. H. Fan, E. K. N. Yung, C. H. Chan, Z. Nie, and J. Hu, "Fast analysis of electromagnetic scattering of 3-D dielectric bodies with augmented GMRES-FFT method ," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3848-3852, Nov. 2005.
doi:10.1109/TAP.2005.858833 Google Scholar
14. Zhao, L., T.-J. Cui, and W.-D. Li, "An efficient algorithm for EM scattering by electrically large dielectric objects using MR-QEB iterative scheme and CG-FFT method ," Progress In Electromagnetics Research, Vol. 67, 341-355, 2007.
doi:10.2528/PIER06121902 Google Scholar
15. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS, Publishing Company, 1996.
16. Xu, X. M. and Q. H. Liu, "Conjugate-gradient nonuniform fast Fourier transform (CG-NUFFT) method for one- and twodimensional media," Microwave and Optical Technology Letters, Vol. 24, No. 6, 385-389, 2000.
doi:10.1002/(SICI)1098-2760(20000320)24:6<385::AID-MOP8>3.0.CO;2-W Google Scholar
17. Liu, Q. H. and X. Y. Tang, "Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT)," Electronics Letters, Vol. 34, No. 20, 1913-1914, Oct. 1, 1998.
doi:10.1049/el:19981372 Google Scholar
18. Liu, Q. H. and N. Nguyen, "Accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s)," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 1, 18-20, Jan. 1998.
doi:10.1109/75.650975 Google Scholar
19. Liu, Q. H., X. M. Xu, B. Tian, and Z. Q. Zhang, "Applications of nonuniform fast transform algorithms in numerical solutions of differential and integral equations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, Part I, 1551-1560, July 2000.
doi:10.1109/36.851955 Google Scholar
20. Liu, Q. H., X. M. Xu, and Z. Q. Zhang, "Applications of nonuniform fast transform algorithms in numerical solutions of integral equations," Annual Review of Progress in Applied Computational Electromagnetics, Vol. 2, 897-904, 2000. Google Scholar
21. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 9, 1757-1766, 1992.
doi:10.1109/22.156602 Google Scholar
22. Zhang, Z. Q. and Q. H. Liu, "Three-dimensional weak-form conjugate- and biconjugate-gradient FFT methods for volume integral equations," Microwave and Optical Technology Letters, Vol. 29, No. 5, 350-356, 2001.
doi:10.1002/mop.1176 Google Scholar
23. Potts, D. and G. Steidl, "Fast summation at nonequispaced knots by NFFTs," SIAM J. on Sci. Comput., Vol. 24, 2013-2037, 2003.
doi:10.1137/S1064827502400984 Google Scholar
24. Dutt, A. and V. Rokhlin, "Fast Fourier transforms for nonequispaced data," SIAM J. Sci. Stat. Comput., Vol. 14, 1368-1393, 1993.
doi:10.1137/0914081 Google Scholar
25. Kunis, S. and D. Potts, "Time and memory requirements of the Nonequispaced FFT," Sampling Theory in Signal and Image Processing, Vol. 7, 77-100, 2008. Google Scholar
26. Fessler, J. A. and B. P. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," IEEE Transactions on Signal Processing, Vol. 51, No. 2, 560-574, Feb.2003. Google Scholar
27. Morgan, R. B., "GMRES with deflated restarting," SIAM J. Sci. Comput., Vol. 24, 20-37, 2002. Google Scholar
28. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, 2002.
29. Chen, R. S., Z. H. Fan, and E. K. N. Yung, "Analysis of electromagnetic scattering of three-dimensional dielectric bodies using Krylov subspace FFT iterative methods," Source: Microwave and Optical Technology Letters, Vol. 39, No. 4, 261-267, Nov. 20, 2003. Google Scholar
30. Ding, D.-Z., R.-S. Chen, and Z. Fan, "An efficient SAI preconditioning technique for higher order hierarchical MLFMM implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008. Google Scholar