1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry , J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
3. Pendry, J. B., A. J. Holden, D. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
5. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
6. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, PIER 51, 1-26, 2005. Google Scholar
7. Engheta, N. and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Trans.Micr owave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
8. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
9. Chen , H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585 Google Scholar
10. Engheta, N. and R. W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, Inc., 2006.
11. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2006.
12. Marques, R., F. Mart´ın, and M. Sorolla, Metamaterials with Negative Parameters, John Wiley & Sons, Inc., 2007.
13. Sihvola, A. H., "Metamaterials and depolarization factors," Progress In Electromagnetics Research, PIER 51, 65-82, 2005. Google Scholar
14. Li, Z. and J. Cui, "Sandwich-Structure waveguides for very highpower generation and transmission using left-handed materials," Progress In Electromagnetics Research, PIER 69, 101-116, 2007. Google Scholar
15. Ding, W., L. Chen, and C.-H. Liang, "Characteristics of electromagnetic wave propagation in biaxial anisotropic lefthanded materials," Progress In Electromagnetics Research, PIER 70, 37-52, 2007. Google Scholar
16. Henin, B. H, M. H. Al Sharkawy, and A. Z. Elsherbeni, "Scattering of obliquely incident plane wave by an array of parallel concentric metamaterial cylinders," Progress In Electromagnetics, PIER 77, 285-307, 2007. Google Scholar
17. Melezhik, P. N., A. Y. Poyedinchuk, N. P. Yashina, G. Granet, and M. Ney, "Radiation from surface with periodic boundary of metamaterials excited by a current," Progress In Electromagnetics, PIER 65, 1-14, 2006. Google Scholar
18. Duan, Z. Y., B.-I. Wu, J. A. Kong, F. M. Kong, and S. Xi, "Enhancement of radiation properties of a compact planar antenna using transformation media as substrates," Progress In Electromagnetics Research, PIER 83, 375-384, 2008. Google Scholar
19. Cherenkov , P. A., "Visible emission of clean liquids by action of γ radiation," Dokl.A kad.Nauk SSSR, Vol. 2, 451-454, 1934. Google Scholar
20. Frank, I. M. and I. E. Tamm, "Coherent visible radiation of fast electrons passing through matter," Dokl.A kad.Nauk SSSR, Vol. 14, 109-114, 1937. Google Scholar
21. Ginzburg, V. L, "The quantum theory of light radiation of an electron uniformly moving in a medium," Journal of Physics (Moscow), Vol. 2, 441-452, Moscow, 1940. Google Scholar
22. Lu, J., T. M. Grzegorczyk, Y. Zhang, J. Pacheco Jr., B.-I. Wu, J. A. Kong, and M. Chen, "Cerenkov radiation in materials with negative permittivity and permeability," Optics Express , Vol. 11, No. 7, 723-734, 2003. Google Scholar
23. Averkov, Y. O. and V. M. Makovenko, "Cherenkov radiation by an electron bunch that moves in a vacuum above a left-handed material," Physical Review B, Vol. 72, 205110, 2005.
doi:10.1103/PhysRevB.72.205110 Google Scholar
24. Lu, J. and Ph.D. Thesis, Department of Physics, Massachusetts Institute of Technology, 2006.
25. Duan, Z. Y., Y. B. Gong, Y. Y. Wei, W. X. Wang, B.-I. Wu, J. A. Kong, and M. Chen, "Theoretical investigation into Cherenkov radiation in an anisotropic double-negative medium," 33rd International Conference on Infrared Millimeter, and Terahertz Waves , Sep. 15-19, 2008. Google Scholar
26. Duan, Z. Y., B.-I. Wu, J. Lu, J. A. Kong, and M. Chen, "Reversed Cherenkov radiation in a waveguide filled with anisotropic doublenegative metamaterials," Journal of Applied Physics, Vol. 104, 063303, 2008.
doi:10.1063/1.2980336 Google Scholar
27. Duan, Z. Y., B.-I. Wu, J. Lu, J. A. Kong, and M. Chen, "Cherenkov radiation in anisotropic double-negative metamaterials," Optics Express, Vol. 16, No. 22, 18479-18484, 2008.
doi:10.1364/OE.16.018479 Google Scholar
29. Belyantsev, A. M. and A. B. Kozyrev, "Generation of RF oscillations in the interaction of an electromagnetic shock with a synchronous backward wave," Technical Physics, Vol. 45, No. 6, 747-752, 2000.
doi:10.1134/1.1259714 Google Scholar
30. Luo, C., M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Cerenkov radiation in photonic crystals," Science, Vol. 299, 368-371, 2003.
doi:10.1126/science.1079549 Google Scholar
31. Zhang, Y., Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, "Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguide," Physical Review Letters, Vol. 100, 163904, 2008.
doi:10.1103/PhysRevLett.100.163904 Google Scholar
32. Wu, B.-I., J. Lu, J. A. Kong, and M. Chen, "Left-handed metamaterial design for Cerenkov radiation," Journal of Applied Physics, Vol. 102, 114907, 2007.
doi:10.1063/1.2818066 Google Scholar
33. Antipov, S., L. Spentzouris, W. Liu, W. Gai, and J. G. Power, "Double-negative metamaterial research for accelerator applications," Nuclear Instruments and Methods in Physics Research A, Vol. 579, 915-923, 2007.
doi:10.1016/j.nima.2007.04.158 Google Scholar
34. Antipov, S., L. Spentzouris, W. Liu, W. Gai, and J. G. Power, "Wakefield generation in metamaterial-loaded waveguide," Journal of Applied Physics, Vol. 102, 034906, 2007.
doi:10.1063/1.2767640 Google Scholar
35. Shchegolkov, D. Y., A. K. Azad, J. F. O’Hara, and E. I. Smirnove, "A proposed measurement of the reverse Cherenkov radiation effect in a metamaterial-loaded circular waveguide," 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, USA, Sep. 15-19, 2008. Google Scholar
36. Gribic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," Journal of Applied Physics, Vol. 92, No. 10, 5930-5935, 2002.
doi:10.1063/1.1513194 Google Scholar
37. Xi, S., et al. "Experimental verification of reversed Cerenkov radiation in a left-handed material,", in preparation, 2009. Google Scholar
38. Antipov, S., L. Spentzours, W. Gai, M. Conde, F. Franchini, R. Konecny, W. Liu, J. G. Power, Z. Yusof, and C. Jing, "Observation of wakefield generation in left-handed band of metamaterial-loaded waveguide," Journal of Applied Physics, Vol. 104, 014901, 2008.
doi:10.1063/1.2948929 Google Scholar
39. Antipov, S. and W. Gai, Private Communications. Google Scholar
40. Li, Z. and J. Cui, "Novel waveguide directional couplers using left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1053-1062, 2007. Google Scholar
41. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, 2004.
doi:10.1126/science.1094025 Google Scholar
42. Grigorenko, A. N., A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature, Vol. 438, 335-338, 2005.
doi:10.1038/nature04242 Google Scholar
43. Soukoulis, C. M., S. Linden, and M.Wegener, "Negative refractive index at optical wavelengths," Science, Vol. 315, No. 5808, 47-49, 2007.
doi:10.1126/science.1136481 Google Scholar
44. Gilmour, A. S. Jr., Principles of Traveling Wave Tubes, Artech House, Norwood, MA, 1994.
45. Anonymous reviewer Private communications. Google Scholar
46. Caloz, C., A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," New journal of physics, Vol. 7, No. 167, 1-15, 2005. Google Scholar
47. Cabuz, A. I., D. Felbacq, and D. Cassagne, "Homogenization of negative-index composite metamaterials: A two-step approach," Physical Review Letters, Vol. 98, 037403, 2007.
doi:10.1103/PhysRevLett.98.037403 Google Scholar
48. Semichaevsky, A. and A. Akyurtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, PIER 71, 129-147, 2007. Google Scholar
49. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging," Journal of the Optical Society of America B, Vol. 23, No. 3, 391-403, 2006.
doi:10.1364/JOSAB.23.000391 Google Scholar
50. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611 Google Scholar
51. Popa, B.-I. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Physical Review Letters, Vol. 100, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401 Google Scholar
52. Zhou, J., T. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express, Vol. 16, No. 5, 11147-11152, 2008.
doi:10.1364/OE.16.011147 Google Scholar
53. Pendry , J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
54. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters, Vol. 31, No. 12, 1800-1802, 2006.
doi:10.1364/OL.31.001800 Google Scholar
55. Cummer, S. A., B.-I. Popa, and T. H. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
doi:10.1109/TAP.2007.912959 Google Scholar
56. Liu, Y., G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Physical Review Letters, Vol. 99, 153901, 2007.
doi:10.1103/PhysRevLett.99.153901 Google Scholar
57. Shadrivov, I. V., A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Tunable transmission and harmonic generation in nonlinear metamaterials," Applied Physics Letters, Vol. 93, 161903, 2008.
doi:10.1063/1.2999634 Google Scholar
58. Chen, L., W. Ding, X.-J. Dang, and C.-H. Liang, "Counterpropagating energy-flows in nonlinear left-handed metamaterials," Progress In Electromagnetics Research, PIER 70, 257-267, 2007. Google Scholar
59. Smith, D. R., S. Shultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104-1-5, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
60. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterial," Physical Review E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
61. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasistatic Lorentz theory," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, Part 1, 2550-2557, 2003.
doi:10.1109/TAP.2003.817565 Google Scholar
62. Veselago, V. G. and E. E. Narimanov, "The left hand of brightness: Past, present and future of negative index materials," Nature Materials, Vol. 5, 759-762, 2006.
doi:10.1038/nmat1746 Google Scholar