1. Bhattacharjee, S., V. J. Menon, and K. K. Dey, "On the cutoff conditions and power distribution in fibers of arbitrary cross-section," Can. J. Phys., Vol. 69, 612-615, 1990. Google Scholar
2. Ono, K. and H. Osawa, "Excitation characteristics of fundamental mode in tapered slab waveguides with nonlinear cladding," Electron. Lett., Vol. 27, 664-666, 1991.
doi:10.1049/el:19910416 Google Scholar
3. Choudhury, P. K. and O. N. Singh, "Some multilayered and other unconventional lightguides," Electromagnetic Fields in Unconventional Materials and Structures, Chapt. 8, John Wiley and Sons, New York, 2000. Google Scholar
4. Choudhury, P. K. and T. Yoshino, "TE and TM modes power transmission through liquid crystal optical fibers," Optik, Vol. 115, 49-56, 2004. Google Scholar
5. Nair, A. and P.K. Choudhury, "On the analysis of field patterns in chirofibers," J. Electromag. Waves and Appl., Vol. 21, 2277-2286, 2007.
doi:10.1163/156939307783134470 Google Scholar
6. Ibrahim, A.B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, PIER 72, 269-278, 2007. Google Scholar
7. Cheng, Q. and T. J. Cui, "Guided modes and continuous modes in parallel-plate waveguides excited by a line source," J. Electromag. Waves and Appl., Vol. 21, 1577-1587, 2007. Google Scholar
8. Mei, Z. L. and F. Y. Xu, "A simple, fast and accurate method for calculating cutoff wavelengths for the dominant mode in elliptical waveguide," J. Electromag. Waves and Appl., Vol. 21, 367-374, 2007.
doi:10.1163/156939307779367440 Google Scholar
9. Kumar, D., P. K. Choudhury, and F. A. Rahman, "Towards the characteristic dispersion relation for step-index hyperbolic waveguide with conducting helical winding," Progress In Electromagnetics Research, PIER 71, 251-275, 2007. Google Scholar
10. Kumar, D., P. K. Choudhury, and O. N. Singh II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, PIER 80, 409-420, 2008. Google Scholar
11. Kawakami, S. and S. Nishida, "Characteristics of a doubly clad optical fiber with a low index inner cladding," IEEE J. Quantum Electron., Vol. 10, 879-887, 1974.
doi:10.1109/JQE.1974.1068118 Google Scholar
12. Borland, W. C., D. E. Zelmon, C. J. Radens, J. T. Boyd, and H. E. Jackson, "Properties of four-layer planar optical waveguides near cutoff," IEEE J. Quantum Electron., Vol. 23, 1172-1179, 1978.
doi:10.1109/JQE.1987.1073487 Google Scholar
13. Chaubey, V. K., K. K. Dey, S. P. Ojha, and P. Khastgir, "Modal characteristics of a doubly clad step-index fiber: A general analytical study," Can. J. Phys., Vol. 66, 796-802, 1988. Google Scholar
14. Choudhury, P. K. and R. A. Lessard, "An estimation of power transmission through a doubly clad optical fiber with annular core," Microw. and Opt. Tech. Lett., Vol. 29, 402-405, 2001.
doi:10.1002/mop.1190 Google Scholar
15. Takeo, T. and H. Hattori, "Opical fiber sensor for measuring refractive index," Jpn. J. Appl. Phys., Vol. 21, 1509-1512, 1982.
doi:10.1143/JJAP.21.1509 Google Scholar
16. Paul, P. H. and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett., Vol. 51, 12-14, 1987.
doi:10.1063/1.98888 Google Scholar
17. Messica, A., A. Greenstein, and A. Katzir, "Theory of fiber-optic evanescent-wave spectroscopy and sensors," Appl. Opt., Vol. 35, 2274-2284, 1996.
doi:10.1364/AO.35.002274 Google Scholar
18. Choudhury, P. K. and O. N. Singh, "An overview of optical sensors and their applications," Frontiers in Optical Technology: Materials and Devices, Chapt. 9, Nova Science Publisher, New York, 2007. Google Scholar
19. Suyama, T., Y. Okuno, A. Matsushima, and M. Ohtsu, "A numerical analysis of stop band characteristics by multilayered dielectric gratings with sinusoidal profile," Progress In Electromagnetics Research B, Vol. 2, 83-102, 2008.
doi:10.2528/PIERB07110301 Google Scholar
20. Cheng, S. F. and L. K. Chau, "Colloidal gold-modified optical fiber for chemical and biochemical sensing," Anal. Chem., Vol. 75, 16-21, 2003.
doi:10.1021/ac020310v Google Scholar
21. Sharma, A. K., R. Jha, and B. D. Gupta, "Fiber-optic sensors based on surface plasmon resonance: A comprehensive review," IEEE Sensors J., Vol. 7, 1118-1129, 2007.
doi:10.1109/JSEN.2007.897946 Google Scholar
22. Lee, C.C. and S. Chi, "Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using Brillouin optical-time-domain reflectometer," IEEE Phot. Technol. Lett., Vol. 12, 672-674, 2000.
doi:10.1109/68.849080 Google Scholar
23. Lee, C.C., P.W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Phot. Technol. Lett., Vol. 13, 1094-1096, 2001.
doi:10.1109/68.950746 Google Scholar
24. Zou, W., Z. He, M. Kishi, and K. Hotate, "Stimulated Brillouin scattering and its dependences on temperature and strain in a high-delta optical fiber with F-doped depressed inner cladding," Opt. Lett., Vol. 32, 600-602, 2007.
doi:10.1364/OL.32.000600 Google Scholar
25. Sjoberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009. Google Scholar
26. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Chap. 9, Dover Publications, Inc., New York, 1965.
27. Keiser, G., Optical Fiber Communications, Chap. 2, McGraw-Hill, Singapore, 1986.