Vol. 90
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-02-23
Electromagnetic Analysis of a Non Invasive Microwave Radiometry Imaging System Emphasizing on the Focusing Sensitivity Optimization
By
Progress In Electromagnetics Research, Vol. 90, 385-407, 2009
Abstract
A Green's function based methodology has been developed and implemented with the view to optimize the focusing properties and thus the performance of a Microwave Radiometry Imaging System (MiRaIS). The system consists of an ellipsoidal conductive wall cavity and a sensitive radiometric receiver and its operation principal is based on the convergence of the radiation from one focal point, where the subject or phantom is placed, on the other, where the receiver antenna is positioned. A two-layered cylinder is used to model the human head with the semi-analytical Green's function technique. The imaging configuration is enhanced by different matching structures of various materials which are placed on the surface of both the human head model and the antenna inside the ellipsoidal. Numerical code executions have been realized and the results for the electric field distribution inside the head are presented for materials of various dielectric properties and for left handed materials at two different frequencies (0.5 GHz and 1.0 GHz). Increased sensitivity of the system focusing properties is observed using particular matching structures.
Citation
Melpomeni I. Giamalaki Irene Karanasiou Nikolaos Uzunoglu , "Electromagnetic Analysis of a Non Invasive Microwave Radiometry Imaging System Emphasizing on the Focusing Sensitivity Optimization," Progress In Electromagnetics Research, Vol. 90, 385-407, 2009.
doi:10.2528/PIER09010803
http://www.jpier.org/PIER/pier.php?paper=09010803
References

1. Karanasiou, I. S., "Development of a non invasive brain imaging system using microwave radiometry," Doctor of Philosophy in Engineering, School of Electrical and Computer Engineering, National Technical University of Athens, Dec. 2003(in Greek).

2. Karanasiou, I. S., N. K. Uzunoglu, and C. Papageorgiou, "Towards functional non-invasive imaging of excitable tissues inside the human body using focused microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1898-1908, Aug. 2004.
doi:10.1109/TMTT.2004.831999

3. Karanasiou, I. S., N. K. Uzunoglu, and A. Garetsos, "Electromagnetic analysis of a non-invasive 3D passive microwave imaging system," Progress In Electromagnetics Research, PIER 44, 287-308, 2004.

4. Karanasiou, I. S., N. K. Uzunoglu, S. Stergiopoulos, and W. Wong, "A passive 3D imaging thermograph using microwave radiometry," Innovation and Technology in Biology Medicine, Vol. 25, 227-239, 2004.

5. Karanasiou, I. S. and N. K. Uzunoglu, "Development and feasibility study of a functional brain passive microwave tomography system," URSI 2004 Proceedings, 1194-1196, Pisa, Italy, 2004.

6. Karanasiou, I. S. and N. K. Uzunoglu, "Experimental study of 3D contactless conductivity detection using microwave radiometry: A possible method for investigation of brain conductivity fluctuations," EMBC'04 Proceedings, 2303-2306, San Fransisco, USA, 2004.

7. Karanasiou, I. S., M. I. Giamalaki, A. Oikonomou, and N. K. Uzunoglu, "Passive four-frequency microwave tomography: An experimental feasibility study," IFMBE Proceedings, Vol. 11, 2086-1- 2086-5, Prague, 2005.

8. Giamalaki, M. I., I. S. Karanasiou, and N. K. Uzunoglu, "Enhancement of the focusing properties of a passive radiometry imaging system: A theoretical electromagnetic study," CEAA'07 Proceedings, No. 263, Torino, Italy, 2007.

9. Giamalaki, M. I., I. S. Karanasiou, and N. K. Uzunoglu, "Focused microwave radiometry from a possible functional imaging perspective: Theoretical optimization of the properties of a microwave radiometry system," ITBS 2007 Proceedings, 36-37, Milos Island, Greece, 2007.

10. Acar, R. C. and G. Dural, "Mutual coupling of printed elements on a cylindrically layered structure using closed-form Greens functions," Progress In Electromagnetics Research, PIER 78, 103-127, 2008.

11. Gao, G., C. Torres-Verdin, and T. M. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Greens functions," Progress In Electromagnetics Research, PIER 52, 47-80, 2005.

12. Li, L.-W., N. H. Lim, and W. Y. Yin, "Eigenfunctional expansion of dyadic Green's functions in gyrotropic media using cylindrical vector wave functions," Progress In Electromagnetics Research, PIER 43, 101-121, 2003.

13. Li, L. W., S. B. Yeap, M. S. Leong, T. S. Yeo, and P. S. Kooi, "Dyadic Green's functions in multilayered stratified gyroelectric chiral media," Progress In Electromagnetics Research, PIER 35, 53-81, 2002.

14. Li, L. W., N. H. Lim, and J. A. Kong, "Cylindrical vector wave function representation of Green's dyadic in gyrotropic bianisotropic media," Progress In Electromagnetics Research, 127-145, 2008.

15. Attiya, M., "Dyadic Green's function of an elementary point source above a periodically-defected-grounded dielectric slab," Progress In Electromagnetics Research B, Vol. 4, 127-145, 2008.
doi:10.2528/PIERB08011001

16. Lamultree, S., C. Phongcharoenpanich, S. Kosulvit, and M. Krairiksh, "Analysis of radiation characteristics of a probeexcited rectangular ring antenna by the dyadic Green's function approach," Progress In Electromagnetics Research B, Vol. 11, 79-101, 2009.

17. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

18. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics and Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics and Medicine and Biology, Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

20. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEK, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

21. Pendry, J. B., "Electromagnetic materials enter the negative age," Physics World, Vol. 14, 47-51, 2001.

22. Smith, D. R. and N. Kroll, "Negative refractive index in left handed materials," Physical. Review. Letters, Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

23. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nermat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Physical. Review. Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

24. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

25. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906

26. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering of two or more incident plane waves by a perfect electromagnetic conductor cylinder coated with a metamaterial," Progress In Electromagnetics Research B, Vol. 10, 75-90, 2008.
doi:10.2528/PIERB08083101

27. Yu, G. X. and T. J. Cui, "Imaging and localization properties of LHM superlens excited by 3D horizontal electric dipoles," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 35-46, 2007.
doi:10.1163/156939307779391795

28. Wang, M. Y., J. Xu, J. Wu, Y. B. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," J. of Electromagn. Waves and Appl., Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777