1. Karanasiou, I. S., "Development of a non invasive brain imaging system using microwave radiometry," Doctor of Philosophy in Engineering, School of Electrical and Computer Engineering, National Technical University of Athens, Dec. 2003(in Greek). Google Scholar
2. Karanasiou, I. S., N. K. Uzunoglu, and C. Papageorgiou, "Towards functional non-invasive imaging of excitable tissues inside the human body using focused microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1898-1908, Aug. 2004.
doi:10.1109/TMTT.2004.831999 Google Scholar
3. Karanasiou, I. S., N. K. Uzunoglu, and A. Garetsos, "Electromagnetic analysis of a non-invasive 3D passive microwave imaging system," Progress In Electromagnetics Research, PIER 44, 287-308, 2004. Google Scholar
4. Karanasiou, I. S., N. K. Uzunoglu, S. Stergiopoulos, and W. Wong, "A passive 3D imaging thermograph using microwave radiometry," Innovation and Technology in Biology Medicine, Vol. 25, 227-239, 2004. Google Scholar
5. Karanasiou, I. S. and N. K. Uzunoglu, "Development and feasibility study of a functional brain passive microwave tomography system," URSI 2004 Proceedings, 1194-1196, Pisa, Italy, 2004. Google Scholar
6. Karanasiou, I. S. and N. K. Uzunoglu, "Experimental study of 3D contactless conductivity detection using microwave radiometry: A possible method for investigation of brain conductivity fluctuations," EMBC'04 Proceedings, 2303-2306, San Fransisco, USA, 2004. Google Scholar
7. Karanasiou, I. S., M. I. Giamalaki, A. Oikonomou, and N. K. Uzunoglu, "Passive four-frequency microwave tomography: An experimental feasibility study," IFMBE Proceedings, Vol. 11, 2086-1- 2086-5, Prague, 2005. Google Scholar
8. Giamalaki, M. I., I. S. Karanasiou, and N. K. Uzunoglu, "Enhancement of the focusing properties of a passive radiometry imaging system: A theoretical electromagnetic study," CEAA'07 Proceedings, No. 263, Torino, Italy, 2007. Google Scholar
9. Giamalaki, M. I., I. S. Karanasiou, and N. K. Uzunoglu, "Focused microwave radiometry from a possible functional imaging perspective: Theoretical optimization of the properties of a microwave radiometry system," ITBS 2007 Proceedings, 36-37, Milos Island, Greece, 2007. Google Scholar
10. Acar, R. C. and G. Dural, "Mutual coupling of printed elements on a cylindrically layered structure using closed-form Greens functions," Progress In Electromagnetics Research, PIER 78, 103-127, 2008. Google Scholar
11. Gao, G., C. Torres-Verdin, and T. M. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Greens functions," Progress In Electromagnetics Research, PIER 52, 47-80, 2005. Google Scholar
12. Li, L.-W., N. H. Lim, and W. Y. Yin, "Eigenfunctional expansion of dyadic Green's functions in gyrotropic media using cylindrical vector wave functions," Progress In Electromagnetics Research, PIER 43, 101-121, 2003. Google Scholar
13. Li, L. W., S. B. Yeap, M. S. Leong, T. S. Yeo, and P. S. Kooi, "Dyadic Green's functions in multilayered stratified gyroelectric chiral media," Progress In Electromagnetics Research, PIER 35, 53-81, 2002. Google Scholar
14. Li, L. W., N. H. Lim, and J. A. Kong, "Cylindrical vector wave function representation of Green's dyadic in gyrotropic bianisotropic media," Progress In Electromagnetics Research, 127-145, 2008. Google Scholar
15. Attiya, M., "Dyadic Green's function of an elementary point source above a periodically-defected-grounded dielectric slab," Progress In Electromagnetics Research B, Vol. 4, 127-145, 2008.
doi:10.2528/PIERB08011001 Google Scholar
16. Lamultree, S., C. Phongcharoenpanich, S. Kosulvit, and M. Krairiksh, "Analysis of radiation characteristics of a probeexcited rectangular ring antenna by the dyadic Green's function approach," Progress In Electromagnetics Research B, Vol. 11, 79-101, 2009. Google Scholar
17. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
18. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics and Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics and Medicine and Biology, Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
20. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEK, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
21. Pendry, J. B., "Electromagnetic materials enter the negative age," Physics World, Vol. 14, 47-51, 2001. Google Scholar
22. Smith, D. R. and N. Kroll, "Negative refractive index in left handed materials," Physical. Review. Letters, Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933 Google Scholar
23. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nermat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Physical. Review. Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
24. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803 Google Scholar
25. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906 Google Scholar
26. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering of two or more incident plane waves by a perfect electromagnetic conductor cylinder coated with a metamaterial," Progress In Electromagnetics Research B, Vol. 10, 75-90, 2008.
doi:10.2528/PIERB08083101 Google Scholar
27. Yu, G. X. and T. J. Cui, "Imaging and localization properties of LHM superlens excited by 3D horizontal electric dipoles," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 35-46, 2007.
doi:10.1163/156939307779391795 Google Scholar
28. Wang, M. Y., J. Xu, J. Wu, Y. B. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," J. of Electromagn. Waves and Appl., Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777 Google Scholar