1. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, JohnWiley & Sons, West Sussex, England, 2004.
2. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, et al. "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702 Google Scholar
3. Chung, B. K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, PIER 75, 239-252, 2007. Google Scholar
4. Murata, K., A. Hanawa, and R. Nozaki, "Broadband complex permittivity measurement techniques of materials with thin configuration at microwave frequencies," J. Applied Phys., Vol. 98, 084107-1-084107-0, 2005. Google Scholar
5. Decreton, M. C. and F. E. Gardiol, "Simple non-destructive method for the measurement of complex permittivity," IEEE Trans. Instrum. Meas., Vol. 23, 434-438, 1974.
doi:10.1109/TIM.1974.4314329 Google Scholar
6. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress in Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701 Google Scholar
7. Olmi, R., M. Tedesco, C. Riminesi, et al. "Thickness-independent measurement of the permittivity of thin samples in the X band," Meas. Sci. Technol., Vol. 13, 503-509, 2002. Google Scholar
8. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, et al. "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, 711-718, 1994.
doi:10.1109/19.328897 Google Scholar
9. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, 1990.
doi:10.1109/19.52520 Google Scholar
10. Hock, K. M., "Error correction for diffraction and multiple scattering in free-space microwave measurement of materials," IEEE Trans. Microw Theory Tech., Vol. 54, 648-659, 2006.
doi:10.1109/TMTT.2005.862666 Google Scholar
11. Hasar, U. C., "A microcontroller-based microwave measurement system for permittivity determination of fresh cement-based materials," Proc. IEEE Instrumentation and Measurement Technology Conf. (IMTC'07), 2007. Google Scholar
12. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506 Google Scholar
13. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
14. Sarabandi, K. and F. T. Ulaby, "Technique for measuring the dielectric constant of thin materials," IEEE Trans. Instrum. Meas., Vol. 37, 631-636, 1988.
doi:10.1109/19.9828 Google Scholar
15. Kenneth, E. D. and L. J. Buckley, "Dielectric materials measurement of thin samples at millimeter wavelengths," IEEE Trans. Instrum. Meas., Vol. 41, 723-725, 1992.
doi:10.1109/19.177352 Google Scholar
16. Chung, , B. K., "A convenient method for complex permittivity measurement of thin materials at microwave frequencies," J. Phys. D.: Appl. Phys., Vol. 39, 1926-1931, 2006.
doi:10.1088/0022-3727/39/9/030 Google Scholar
17. Challa, R. K., D. Kajfez, J. R. Gladden, et al. "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting ," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001 Google Scholar
18. Ness, J., "Broad-band permittivity measurements using the semiautomatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198 Google Scholar
19. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium-and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706 Google Scholar
20. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242 Google Scholar
21. Hasar, U. C., "A fast and accurate amplitude-only transmission reflection method for complex permittivity determination of lossy materials ," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229 Google Scholar
22. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and nondispersive low-loss materials," IET Microw. Antennas Propag., 2009. Google Scholar
23. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, 337-341, 2009.
doi:10.1002/mop.24048 Google Scholar
24. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.
25. Abramowitz, M. and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 17-18, Dover Publications, New York, NY, 1972.
26. Press, W. H., S. A. Teukolsky, W. T. Vetterling, et al. Numerical Recipes in C: The Art of Scientific Computing, Ch. 9, Cambridge University Press, New York, NY, 1992.
27. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements," Natl. Inst. Stand. Technol., 1341, Boulder. CO. Tech., July 1990. Google Scholar
28. Engen, G. F. and C. A. Hoer, "Thru-reflect-line': An improved technique for calibrating the dual six-port automatic network analyzer ," IEEE Trans. Microw. Theory Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778 Google Scholar
29. Von Hippel, A. R., Dielectric Materials and Applications, John Wiley & Sons, New York, NY, 1954.