Vol. 92
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-04-14
Thickness-Independent Automated Constitutive Parameters Extraction of Thin Solid and Liquid Materials from Waveguide Measurements
By
Progress In Electromagnetics Research, Vol. 92, 17-32, 2009
Abstract
The constitutive parameters measurement of thin solid and liquid materials by transmission-reflection methods generally suffers from a) the requirement of the transformation of measured scattering parameters from the reference plane to the end surfaces of the material (measurement plane) and b) inaccurate knowledge on the length of the material, if the material does not fill the entire measurement cell (a waveguide or coaxial-line section). In this research paper, a microwave waveguide method for constitutive parameters determination of these materials is proposed to simultaneously eliminate these problems. There are three main advantages of the proposed method as: a) it explicitly determines the constitutive parameters from measured S-parameters; b) it does not require the knowledge about sample length since it directly measures it as a byproduct of the method; and c) it offers a self-checking feature to trace the performance and accurateness of measurements. This feature does not depend on the constitutive parameters of the sample. We measured the complex permittivity of some thin solid and liquid test samples for validation of the method.
Citation
Ugur Cem Hasar , "Thickness-Independent Automated Constitutive Parameters Extraction of Thin Solid and Liquid Materials from Waveguide Measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606
http://www.jpier.org/PIER/pier.php?paper=09031606
References

1. Nyfors, E. G. and P. Vainikainen, Industrial Microwave Sensors, Artech House, Inc., Norwood, MA, 1989.

2. Chen, L. F., et al., Microwave Electronics: Measurement and Materials Characterization, JohnWiley & Sons, West Sussex, England, 2004.

3. Hebeish, A. A., et al., "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

4. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

5. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., New York, NY, 2005.

6. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506

7. Williams, T. C., M. A. Stuchly, and P. Saville, "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 51, 1560-1566, 2003.
doi:10.1109/TMTT.2003.810139

8. Courtney, C. C. and W. Motil, "One-port time-domain measurement of the approximate permittivity and permeability of materials," IEEE Trans. Microw. Theory Tech., Vol. 47, 551-555, 1999.
doi:10.1109/22.763154

9. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

10. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

11. Packard, H., "Measuring dielectric constant of solids with the HP 8510 network analyzer,", Product Note 8510-3, 1985.

12. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

13. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,", NIST, Boulder, CO, Tech. Note 1355, 1992.
doi:10.1109/22.57336

14. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials," IEEE Trans. Instrum. Meas., Vol. 48, 1141-1148, 1999.
doi:10.1109/19.816128

15. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, PIER 42, 131-142, 2003.

16. Folgero, K., "Broad-band dielectric spectroscopy of lowpermittivity fluids using one measurement cell," IEEE Trans. Instrum. Meas., Vol. 47, 881-885, 1998.
doi:10.1109/19.744637

17. Qaddoumi, N., S. Ganchev, and R. Zoughi, "Microwave diagnosis of low density glass fibers with resin binder," Res. Nondestruc. Eval., Vol. 8, 177-188, 1996.

18. Hasar, U. C., "Calibration-independent method for complex permittivity determination of liquid and granular materials," Electron. Lett., Vol. 44, 585-587, 2008.
doi:10.1049/el:20080242

19. Baker-Jarvis, J., M. D. Janezic, and C. A. Jones, "Shielded opencircuited sample holder for dielectric measurements of solids and liquids," IEEE Trans. Instrum. Meas., Vol. 47, 338-344, 1998.
doi:10.1109/19.744172

20. Vanzura, E. J., J. Baker-Jarvis, J. H. Grosvenor, and M. Janezic, "Intercomparison of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 42, 2063-2070, 1994.
doi:10.1109/22.330120

21. Mattar, K. E., D. G. Watters, and M. E. Brodwin, "Influence of wall contacts on measured complex permittivity spectra at coaxial line frequencies," IEEE Trans. Microw. Theory Tech., Vol. 39, 532-537, 1991.
doi:10.1109/22.75297

22. Somlo, P. I., "A convenient self-checking method for the automated microwave measurement of μ and ε," IEEE Trans. Instrum. Meas., Vol. 42, 213-216, 1993.
doi:10.1109/19.278551

23. Sjoberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304

24. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

25. Hasar, U. C., "A fast and accurate amplitude-only transmissionreflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229

26. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

27. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, PIER 91, 123-183, 2009.

28. Buyukozturk, O., T. Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004

29. Ebara, H., T. Inoue, and O. Hashimoto, "Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band," Sci. Technol. Adv. Mat., Vol. 7, 77-83, 2006.
doi:10.1016/j.stam.2005.11.019

30. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, 1992.

31. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.

32. Deshpande, M. D., C. J. Reddy, P. I. Tiemsin, and R. Cravey, "A new approach to estimate complex permittivity of dielectric materials at microwave frequencies using waveguide measurements," IEEE Trans. Microw. Theory Tech., Vol. 45, 359-365, 1997.
doi:10.1109/22.563334

33. Nishikata, A., "A swept-frequency measurement of complex permittivity and complex permeability of a columnar specimen inserted in a rectangular waveguide," IEEE Trans. Microw. Theory Tech., Vol. 55, 1554-1567, 2007.
doi:10.1109/TMTT.2007.900340

34. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

35. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid acrowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402

36. Hasar, U. C. and O. Simsek, "A simple approach for evaluating the reciprocity of materials without using any calibration standard," Progress In Electromagnetics Research, PIER 91, 139-152, 2009.

37. Engen, G. F. and C. A. Hoer, "'Thru-reflect-line': An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Microw. Theory and Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778

38. Hasted, J. B., Aqueous Dielectrics, Chapman and Hall, London, UK, 1973.

39. Chin, G. Y. and E. A. Mechtly, "Properties of materials," Reference Data for Engineering: Radio, Electronics, Computer, and Communications, E. C. Jordan (ed.), 4-20–4-23, Howard W. Sams & Co., Indianapolis, IN, 1986.

40. Von Hippel, A. R., Dielectric Materials and Applications, 134-135, 310-332, John Wiley & Sons, New York, NY, 1954.