1. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587 Google Scholar
2. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.
3. Furlani, E. P., "Field analysis and optimization of ndfeb axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
doi:10.1109/20.619603 Google Scholar
4. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008. Google Scholar
5. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096 Google Scholar
6. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708 Google Scholar
7. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102 Google Scholar
8. Furlani, E. P. and M. Knewston, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 3, 2322-2325, 1997.
doi:10.1109/20.573849 Google Scholar
9. Lang, M., "Fast calculation method for the forces and stiffnesses of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002. Google Scholar
10. Perigo, E., R. Faria, and C. Motta, "General expressions for the magnetic flux density produced by axially magnetized toroidal permanent magnets," IEEE Trans. Magn., Vol. 43, No. 10, 3826-3832, 2007.
doi:10.1109/TMAG.2007.904708 Google Scholar
11. Babic, S. I., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3D linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3127, 2000.
doi:10.1109/20.908707 Google Scholar
12. Babic, S. I. and C. Akyel, "An improvement in the calculation of the magnetic field for an arbitrary geometry coil with rectangular cross section," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, 493-504, November 2005. Google Scholar
13. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Magnetic field produced by a tile permanent magnet whose polarization is both uniform and tangential," Progress In Electromagnetics Research B, Vol. 13, 1-20, 2009.
doi:10.2528/PIERB08121901 Google Scholar
14. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Permanent magnet couplings: Field and torque three-dimensional expressions based on the coulombian model," IEEE Trans. Magn., Vol. 45, No. 4, 1950-1958, 2009.
doi:10.1109/TMAG.2008.2010623 Google Scholar
15. Azzerboni, B. and E. Cardelli, "Magnetic field evaluation for disk conductors," IEEE Trans. Magn., Vol. 29, No. 6, 2419-2421, 1993.
doi:10.1109/20.280997 Google Scholar
16. Azzerboni, B., G. A. Saraceno, and E. Cardelli, "Three-dimensional calculation of the magnetic field created by current-carrying massive disks," IEEE Trans. Magn., Vol. 34, No. 5, 2601-2604, 1998.
doi:10.1109/20.717601 Google Scholar
17. Babic, S. I., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
doi:10.1109/20.996131 Google Scholar
18. Akyel, C., S. I. Babic, and M. M. Mahmoudi, "Mutual inductance calculation for non-coaxial circular air coils with parallel axes," Progress In Electromagnetics Research, Vol. 91, 287-301, 2009.
doi:10.2528/PIER09021907 Google Scholar
19. Jian, L. and K. T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301 Google Scholar
20. Chau, K. T., D. Zhang, J. Z. Jiang, and L. Jian, "Transient analysis of coaxial magnetic gears using finite element comodeling," Journal of Applied Physics, Vol. 103, No. 7, 1-3, 2008.
doi:10.1063/1.2831491 Google Scholar
21. Akoun, G. and J. P. Yonnet, "3D analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans. Magn., Vol. 20, No. 5, 1962-1964, 1984.
doi:10.1109/TMAG.1984.1063554 Google Scholar
22. Elies, P. and G. Lemarquand, "Analytical optimization of the torque of a permanent-magnet coaxial synchronous coupling," IEEE Trans. Magn., Vol. 34, No. 4, 2267-2273, 1998.
doi:10.1109/20.703865 Google Scholar
23. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, 1999.
doi:10.1109/20.799068 Google Scholar
24. Lemarquand, G. and V. Lemarquand, "Annular magnet position sensor," IEEE. Trans. Magn., Vol. 26, No. 5, 2041-2043, 1990.
doi:10.1109/20.104612 Google Scholar
25. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441 Google Scholar
26. Charpentier, J. F. and G. Lemarquand, "Calculation of ironless permanent magnet coupling using semi-numerical magnetic pole theory method ," COMPEL, Vol. 20, No. 1, 72-89, 2001. Google Scholar
27. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics ," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, 2007.
doi:10.1109/TMAG.2007.902995 Google Scholar
28. Selvaggi, J. P., S. Salon, O. M. Kwon, M. V. K. Chari, and M. De Bortoli, "Computation of the external magnetic field, near-field or far-field from a circular cylindrical magnetic source using toroidal," IEEE Trans. Magn., Vol. 43, No. 4, 1153-1156, 2007.
doi:10.1109/TMAG.2007.892275 Google Scholar
29. Zhilichev, Y., "Calculation of magnetic field of tubular permanent magnet assemblies in cylindrical bipolar coordinates," IEEE Trans. Magn., Vol. 43, No. 7, 3189-3195, 2007.
doi:10.1109/TMAG.2007.894636 Google Scholar
30. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using coulombian approach for modeling scalar potential and magnetic ¯eld of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316 Google Scholar
31. Conway, J., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 4, 453-462, 2008.
doi:10.1109/TMAG.2008.917128 Google Scholar
32. Kim, K., E. Levi, Z. Zabar, and L. Birenbaum, "Mutual inductance of noncoaxial circular coils with constant current density ," IEEE Trans. Magn., Vol. 33, No. 5, 4303-4309, 1997.
doi:10.1109/20.620439 Google Scholar
33. http://www.univ-lemans.fr/~glemar.
34. Lemarquand, G., "Ironless loudspeakers," IEEE Trans. Magn., Vol. 43, No. 8, 3371-3374, 2007.
doi:10.1109/TMAG.2007.897739 Google Scholar
35. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Ironless loudspeakers with ferrofluid seals," Archives of Acoustics, Vol. 33, No. 4, 3-10, 2008. Google Scholar
36. Ravaud, R. and G. Lemarquand, "Analytical expression of the magnetic field created by tile permanent magnets tangentially magnetized and radial currents in massive disks," Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009.
doi:10.2528/PIERB09012704 Google Scholar