Vol. 94
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-18
A Novel Source Localization Scheme Based on Unitary ESPRIT and City Electronic Maps in Urban Environments
By
Progress In Electromagnetics Research, Vol. 94, 243-262, 2009
Abstract
In this paper, a novel source localization scheme is proposed based on the unitary ESPRIT algorithm with back ray tracing technique and the city electronic maps. Our scheme can be summarized into two steps. First, the unitary ESPRIT algorithm is employed to estimate the angles and delays of the arrival rays radiated from the source. Second, based on the obtained information we devise a back ray tracing technique to recover the signal propagation paths according to the Geometrical Theory of Reflections and the city electronic map. After these two steps the source position can be obtained by averaging all the estimated positions. In order to minimize estimated errors caused by the Unitary ESPRIT, a valid-range selection criterion for the judgment of the validity of the estimated position data is proposed. On the other hand, we introduce a path length weighting factor to reduce the estimated errors caused by the terrain data inaccuracy. This position method can locate both the line of sight (LOS) and non-line of sight (NLOS) sources efficiently and it also can locate multi-sources simultaneously. Six simulations are carried out in three terrain scenarios. The numerical results demonstrate that our model can be applied to estimate the positions for both 2D and 3D cases. The accuracy of our model for a cell of 80 m × 45 m can reach 10 m when SNR is greater than 10 dB.
Citation
Hong Bing Song Hao-Gang Wang Kan Hong Li Wang , "A Novel Source Localization Scheme Based on Unitary ESPRIT and City Electronic Maps in Urban Environments," Progress In Electromagnetics Research, Vol. 94, 243-262, 2009.
doi:10.2528/PIER09051703
http://www.jpier.org/PIER/pier.php?paper=09051703
References

1. Tayebi, A., J. Gόmez, F. S. Saez De Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments," Progress In Electromagnetic Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

2. Soliman, M. S., T. Morimoto, and Z. I. Kawasaki, "Three-dimensional localization system for impulsive noise sources using ultra-wideband digital interferometer technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027

3. Soliman, M. S., A. Hirata, T. Morimoto, and Z. I. Kawasaki, "Numerical and experimental study on three-dimensional localization for ultra-wideband impulsive noise sources," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 2, 175-187, 2005.
doi:10.1163/1569393054497276

4. Liew, S. C., K. G. Tan, and C. P. Tan, "Non-taylor series based positioning method for hybrid GPS/cellphone system," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 717-729, 2006.
doi:10.1163/156939306776143451

5. Liew, S. C., K. G. Tan, and T. S. Lim, "Investigation of direct A-GPS positioning for hybrid E-OTD/GNSS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 79-87, 2006.
doi:10.1163/156939306775777332

6. Chueng, K. W., H. C. So, W.-K. Ma, and Y. T. Chan, "Least square algorithms for time-of-arrival based mobile location," IEEE Trans. Signal Processing, Vol. 52, 1121-1128, 2004.
doi:10.1109/TSP.2004.823465

7. Wang, X., Z. X. Wang, and B. O. Dea, "A TOA based location algorithm reducing the errors due to Nom-Line-of-Sight (NLOS) propagation," IEEE Trans. Veh. Tech., Vol. 52, 112-116, 2003.
doi:10.1109/TVT.2002.807158

8. Ca®ery, J. J., "Wireless Location in CDMA Cellular Radio Systems," KAP, 1999.

9. Landesa, L., I. T. Castro, J. M. Taboada, and F. Obelleiro, "Bias of the maximum likelihood DOA estimation from inaccurate knowledge of the antenna array response," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1205-1217, 2007.

10. Harabi, F., H. Changuel, and A. Gharsallah, "Direction of arrival estimation method using a 2-L shape arrays antenna," Progress In Electromagnetics Research, Vol. 69, 145-160, 2007.
doi:10.2528/PIER06120204

11. Deng, P. and P. Z. Fan, "An AOA assisted TOA position system," ICCT 2000 Proceedings, 1501-1504, Beijing, 2000.

12. Cong, L. and W. H. Zhuang, "Hybrid TDOA/AOA mobile users location for wideband CDMA cellular system," IEEE Trans. Wireless Commun., Vol. 1, 439-447, 2002.
doi:10.1109/TWC.2002.800542

13. Cong, L. and W. H. Zhuang, "Non-line-sight error mitigation in mobile location," IEEE Trans. Wireless Commun., Vol. 4, 560-572, 2005.
doi:10.1109/TWC.2004.843040

14. Chen, P. C., "A non-line-of-sight error mitigation algorithm in location estimation," Proc. IEEE Wireless Communications Networking Conf., Vol. 1, 316-320, 1999.

15. Chan, Y. T., W. Y. Tsui, H. C. So, and P. C. Ching, "Time-of-arrival based localization under NLOS conditions," IEEE Trans. Veh. Tech., Vol. 55, 17-24, 2006.
doi:10.1109/TVT.2005.861207

16. Algeier, V., B. Demissie, W. Koch, and R. Thomae, "Blind localization of 3G mobile terminals in multipath scenarios," Proceedings of the 3rd Workshop on Position and Communication, 219-226, 2006.

17. Kikuchi, S., A. Sano, H. Tsuji, and R. Miura, "A novel approach to mobile-terminal positioning using signal array antenna in urban environments," Proc. VTC IEEE, 1010-1014, 2003.

18. Seow, C. K. and S. Y. Tan, "Localization of omni-directional mobile device in multipath environments," Progress In Electromagnetic Research, Vol. 85, 323-348, 2008.
doi:10.2528/PIER08090302

19. Teh, C. H., F. Kung, and H. T. Chuah, "A path-corrected wall model for ray-tracing propagation modeling," Journal of Electromagnetic Waves and Application, Vol. 20, No. 2, 207-214, 2006.
doi:10.1163/156939306775777288

20. Jin, K.-S., T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341

21. Haardt, M. and J. A. Nossek, "Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden," IEEE Trans. Signal Processing, Vol. 43, 1232-1242, 1995.
doi:10.1109/78.382406

22. Haardt, M. and J. A. Nossek, "Simultaneous schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems," IEEE Trans. Signal Processing, Vol. 44, 161-169, 1998.
doi:10.1109/78.651206

23. Xu, G., H. R. Richard, and T. Kailath, "Detection of number of sources via exploitation of centro-symmetry Property," IEEE Trans. Signal Processing, Vol. 42, 102-112, 1994.
doi:10.1109/78.258125

24. Lee, A., "Centrohermitian and skew-centrohermitian matrices," Linear Algebra Applicat., Vol. 48, 198-212, 1994.

25. Zoltowski, M. D., M. Haardt, and C. P. Mathews, "Closed-form 2D angle estimation with rectangle arrays in element space or beamspace via unitary ESPRIT," IEEE Trans. Signal Proceeding, Vol. 44, 316-329, J. A. Nossek, Ed., 1996.
doi:10.1109/78.485927

26. Haardt, M., Effiient One-, Two- and Multidimensional High-Resolution Array Signal Proceeding, Aache, Shaker Verlag, Germany, 1996.

27. Zwick, T., D. Hampicke, A. Richter, G. Sommerkorn, R. Thoma, and W. Wisebeck, "A novel antenna concept for double-directional channel measurements," IEEE Trans. Veh. Tech., Vol. 53, 527-537, 2004.
doi:10.1109/TVT.2004.823529

28. Wax, M. and T. Kailath, "Detection of signal by information theoretic criteria," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 33, 387-392, 1985.
doi:10.1109/TASSP.1985.1164557

29. Chen, S. H. and S. K. Jeng, "An SBR/image approach for radio wave propagation in indoor environments with metallic furniture," IEEE Trans. Antennas Propagrat., Vol. 45, No. 1, 98-106, 1997.
doi:10.1109/8.554246

30. Har, D., H. H. Xia, and H. L. Bertoni, "Path-loss prediction model for microcells," IEEE Trans. Veh. Tech., Vol. 18, No. 5, 1453-1462, 1999.
doi:10.1109/25.790520

31. Liang, G. and H. L. Bertoni, "A new approach to 3-D ray tracing for propagation prediction in cities," IEEE Trans. Antennas Propagrat., Vol. 46, No. 6, 853-863, 1998.
doi:10.1109/8.686774

32. Ni, H., G. Ren, and Y. Chang, "A TDOA location scheme in OFDM based WMANs," IEEE Transactions on Consumer Electronics, Vol. 54, No. 3, 1017-1021, 2008.
doi:10.1109/TCE.2008.4637581

33. Kaemarungsi, K. and P. Krishnamurthy, "Modeling of indoor positioning systems based on location fingerprinting," Proceedings of the 23th Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 2, 1012-1022, Hong Kong, 2004.

34. Ahonen, S. and P. Eskelinen, "Mobile terminal location for UMTS," IEEE Aerospace and Electronic Systems Magazine, Vol. 18, No. 2, 23-27, 2003.
doi:10.1109/MAES.2003.1183866

35. Proakis, J. G. and M. Salehi, Communication Systems Engineering, 2 Ed., Publishing House of Electronics Industry, Beijing, 2007.