Vol. 95
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-08-18
Fast and Accurate Analysis of Large Metamaterial Structures Using the Multilevel Fast Multipole Algorithm
By
Progress In Electromagnetics Research, Vol. 95, 179-198, 2009
Abstract
We report fast and accurate simulations of metamaterial structures constructed with large numbers of unit cells containing split-ring resonators and thin wires. Scattering problems involving various metamaterial walls are formulated rigorously using the electric-field integral equation, discretized with the Rao-Wilton-Glisson basis functions. Resulting dense matrix equations are solved iteratively, where the matrix-vector multiplications are performed efficiently with the multilevel fast multipole algorithm. For rapid solutions at resonance frequencies, convergence of the iterations is accelerated by using robust preconditioning techniques, such as the sparse-approximate-inverse preconditioner. Without resorting to homogenization approximations and periodicity assumptions, we are able to obtain accurate solutions of realistic metamaterial problems discretized with millions of unknowns.
Citation
Levent Gurel, Ozgur Ergul, Alper Unal, and Tahir Malas, "Fast and Accurate Analysis of Large Metamaterial Structures Using the Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 47, 509-514, Jan.-Feb. 1968.

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

3. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, Jan. 2001.
doi:10.1063/1.1343489

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847

5. Moss, C. D., T. M. Gregorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-334, 2002.
doi:10.2528/PIER02052409

6. Gokkavas, M., K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B, Vol. 73, No. 19, 193103-1-193103-4, May 2006.
doi:10.1103/PhysRevB.73.193103

7. Eleftheriades, G. V. and K. G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE, New Jersey, 2005.

8. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1535-1556, Apr. 2005.
doi:10.1109/TMTT.2005.845188

9. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

10. Grbic, A. and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett., Vol. 92, No. 11, 117403-1-117403-4, Mar. 2004.
doi:10.1103/PhysRevLett.92.117403

11. Aydin, K., I. Bulu, and E. Ozbay, "Subwavelength resolution with a negative-index metamaterial superlens," Appl. Phys. Lett., Vol. 90, No. 25, 254102-1-254102-3, Jun. 2007.
doi:10.1063/1.2750393

12. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006.

13. Weng, Z., N. Weng, Y. Jiao, and F. Zhang, "A directive patch antenna with metamaterial structure," Microw. Opt. Technol. Lett., Vol. 49, No. 2, 456-459, Feb. 2007.
doi:10.1002/mop.22146

14. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

15. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, No. 4, R. Mittra (ed.), Chap. 4, Pergamon Press, Oxford, 1973.

16. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

17. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

18. Ergul, O. and L. Gurel, "Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics," Electron. Lett., Vol. 44, No. 1, 3-5, Jan. 2008.
doi:10.1049/el:20082282

19. Ergul, O. and L. Gurel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2335-2345, Aug. 2008.
doi:10.1109/TAP.2008.926757

20. Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.

21. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

22. Koc, S., J. M. Song, and W. C. Chew, "Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem," SIAM J. Numer. Anal., Vol. 36, No. 3, 906-921, 1999.
doi:10.1137/S0036142997328111

23. Ergul, O. and L. Gurel, "Enhancing the accuracy of the interpolations and anterpolations in MLFMA," IEEE Antennas Wireless Propag. Lett., Vol. 5, 467-470, 2006.
doi:10.1109/LAWP.2006.885010

24. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

25. Ergul, O. and L. Gurel, "Optimal interpolation of translation operator in multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3822-3826, Dec. 2006.
doi:10.1109/TAP.2006.886562

26. Brandt, A., "Multilevel computations of integral transforms and particle interactions with oscillatory kernels ," Comput. Phys. Comm., Vol. 65, 24-38, Apr. 1991.
doi:10.1016/0010-4655(91)90151-A

27. Carpentieri, B., I. S. Duff, and L. Giraud, "Experiments with sparse preconditioning of dense problems from electromagnetic applications ,", Tech. Rep. TR/PA/00/04, CERFACS, Toulouse, France, 1999.

28. Malas, T. and L. Gurel, "Incomplete LU preconditioning with the multilevel fast multipole algorithm for electromagnetic scattering," SIAM J. Sci. Comput., Vol. 29, No. 4, 1476-1494, June 2007.
doi:10.1137/060659107

29. Paige, C. C. and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM Trans. Math. Software, Vol. 8, 43-71, Mar. 1982.
doi:10.1145/355984.355989

30. Ergul, O. and L. Gurel, "Efficient solution of the electric-field integral equation using the iterative LSQR algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 7, 36-39, 2008.
doi:10.1109/LAWP.2007.908008

31. Sertel, K. and J. L. Volakis, "Incomplete LU preconditioner for FMM implementations," Microw. Opt. Technol. Lett., Vol. 26, No. 4, 265-267, Aug. 2000.
doi:10.1002/1098-2760(20000820)26:4<265::AID-MOP18>3.0.CO;2-O

32. Benzi, M., "Preconditioning techniques for large linear systems: A survey," J. Comput. Phys., Vol. 182, No. 2, 418-477, Nov. 2002.
doi:10.1006/jcph.2002.7176

33. Gurel, L. and O. Ergul, "Comparisons of FMM implementations employing different formulations and iterative solvers," Proc. IEEE Antennas and Propagation Soc. Int. Symp., Vol. 1, 19-22, 2003.

34. Gurel, L. and O. Ergul, "Extending the applicability of the combined-field integral equation to geometries containing open surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 5, 515-516, 2006.
doi:10.1109/LAWP.2006.887552

35. Ubeda, E., J. M. Rius, and J. Romeu, "Preconditioning techniques in the analysis of finite metamaterial slabs," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 265-268, Jan. 2006.
doi:10.1109/TAP.2005.861508

36. Pendry, J. B., A. Holden, J. D. Robbins, and J. W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

37. Pendry, J. B., A. Holden, J. D. Robbins, and J. W. Stewart, "Low-frequency plasmons in thin wire structures," J. Phys., Condens. Matter, Vol. 10, 4785-4809, Mar. 1998.
doi:10.1088/0953-8984/10/22/007

38. Smith, D. R., "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, Oct. 2000.

39. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, No. 5, 056625-1-056625-15, Oct. 2001.

40. Gurel, L., T. Malas, and O. Ergul, "Efficient preconditioning strategies for the multilevel fast multipole algorithm," PIERS Proceedings, 1620-1624, 2007.