1. Yuan, X., "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1053-1058, 1990.
doi:10.1109/22.57330 Google Scholar
2. Angelini, J. J., C. Soize, and P. Soudais, "Hybrid numerical method for harmonic 3-D Maxwell equations: Scattering by a mixed conducting and inhomogeneous anisotropic dielectric medium," IEEE Trans. Antennas Propagat., Vol. 41, No. 1, 66-76, 1993.
doi:10.1109/8.210117 Google Scholar
3. Antilla, G. E. and N. G. Alexopoulos, "Scattering from complex three-dimensional geometries by a curvilinear hybrid finite-element-integral equation approach," J. Opt. Soc. Amer. A, Vol. 11, No. 4, 1445-1457, 1994.
doi:10.1364/JOSAA.11.001445 Google Scholar
4. Boyes, W. E. and A. A. Seidl, "A hybrid finite element method for 3-D scattering using nodal and edge elements," IEEE Trans. Antennas Propagat., Vol. 42, No. 10, 1436-1442, 1994.
doi:10.1109/8.320751 Google Scholar
5. Rogier, H., F. Olyslager, and D. De Zutter, "A hybrid finite element integral equation approach for the eigenmode analysis of complex anisotropic dielectric waveguides," Radio Science, Vol. 31, No. 4, 999-1010, 1996.
doi:10.1029/96RS01052 Google Scholar
6. Eibert, T. and V. Hansen, "Calculation of unbounded field problems in free space by a 3D FEM/BEM-hybrid approach,", Vol. 10, No. 1, 61-78, 1996. Google Scholar
7. Cwik, T., C. Zuffada, and V. Jamnejad, "Modeling three-dimensional scatterers using a coupled finite element --- Integral equation formulation," IEEE Trans. Antennas Propagat., Vol. 44, No. 4, 453-459, 1996.
doi:10.1109/8.489296 Google Scholar
8. Bindiganavale, S. S. and J. L. Volakis, "A hybrid FE-FMM Technique for electromagnetic scattering," IEEE Trans. Antennas Propagat., Vol. 45, No. 1, 180-181, 1997.
doi:10.1109/8.554258 Google Scholar
9. Soudais, P., H. Steve, and F. Dubois, "Scattering from several test-objects computed by 3-D hybrid IE/PDE methods," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 646-653, 1999.
doi:10.1109/8.768803 Google Scholar
10. Sheng, X. Q., J. M. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral method for 3D scattering," IEEE Trans. Antennas Propagat., Vol. 46, No. 3, 303-311, 1998.
doi:10.1109/8.662648 Google Scholar
11. Rogier, H., B. Baekelandt, F. Olyslager, and D. De Zutter, "Application of the FE-BIE technique to problems relevant to electromagnetic compatibility: Optimal choice of mechanisms to take into account periodicity," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 3, 246-256, 2000.
doi:10.1109/15.865331 Google Scholar
12. Sheng, X. Q. and E. K. N. Yung, "Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 50, No. 2, 163-167, 2002.
doi:10.1109/8.997987 Google Scholar
13. Liu, J. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation for 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, No. 9, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377 Google Scholar
14. Vouvakis, M. N., S. C. Lee, K. Z. Zhao, and J. F. Lee, "A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 3060-3070, 2004.
doi:10.1109/TAP.2004.837525 Google Scholar
15. Duff, I. S. and J. K. Reid, "The multifrontal solution of indefinite sparse symmetric linear system," ACM Trans. on Mathematical Software, Vol. 9, No. 3, 302-325, 1983.
doi:10.1145/356044.356047 Google Scholar
16. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company Press, 1996.
17. Saad, Y. and J. Zhang, "BILUM: Block versions of multielimination and multi-level ILU preconditioner for general sparse linear systems," SIAM J. Sci. Comput., Vol. 20, 2103-2121, 1999.
doi:10.1137/S106482759732753X Google Scholar
18. Zhang, J., "A grid based multilevel incomplete LU factorization preconditioning technique for general sparse matrices," Applied Mathematics and Computation, Vol. 124, No. 1, 95-115, 2001.
doi:10.1016/S0096-3003(00)00081-3 Google Scholar
19. Bollhofer, M. and Y. Saad, "On the relations between ILUs and factored approximate inverses," SIAM J. Matrix Anal. Appl., Vol. 24, 219-237, 2002.
doi:10.1137/S0895479800372110 Google Scholar
20. Li, N., Y. Saad, and E. Chow, "Crout versions of ILU for general sparse matrices," SIAM J. Sci. Comput., Vol. 25, No. 2, 716-728, 2003.
doi:10.1137/S1064827502405094 Google Scholar
21. Bollhofer, M., "A robust and e±cient ILU that incorporates the growth of the inverse triangular factors," SIAM J. Sci. Comput., Vol. 25, No. 1, 86-103, 2003.
doi:10.1137/S1064827502403411 Google Scholar
22. Bollhofer, M. and Y. Saad, "Multilevel preconditioners constructed from inverse-based ILUs,", Vol. 27, No. 5, 1627-1650, 2006.
doi:10.1137/040608374 Google Scholar
23. Albanese, R. and G. Rubinacci, "Solution of three dimensional eddy current problems by integral and differential methods," IEEE Trans. Magn., Vol. 24, No. 1, 98-101, 1988.
doi:10.1109/20.43865 Google Scholar
24. Lee, S. C., J.-F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing wave guiding structures," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 8, 1897-1905, 2003.
doi:10.1109/TMTT.2003.815263 Google Scholar
25. Lee, J. F. and D. K. Sun, "p-Type multiplicative Schwarz (pMUS) method with vector finite elements for modeling three-dimensional waveguide discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 864-870.
doi:10.1109/TMTT.2004.823554 Google Scholar
26. Duff, I. S. and S. Pralet, "Strategies for scaling and pivoting for sparse symmetric indefinite problems," SIAM J. Matrix Anal. Appl., Vol. 27, No. 2, 313-340, 2005.
doi:10.1137/04061043X Google Scholar
27. Karypis, G. and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM J. Sci. Comput., Vol. 20, No. 1, 359-392, 1998.
doi:10.1137/S1064827595287997 Google Scholar
28. Karypis, G. and V. Kumar, , Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, available on line at: http://www.cs.umn.edu/~karypis/metis/metis.html, 1998.