Vol. 94
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-17
Microwave Tomography Employing an Adjoint Network Based Sensitivity Matrix
By
Progress In Electromagnetics Research, Vol. 94, 213-242, 2009
Abstract
A reconstruction algorithm for two- and three- dimen-sional microwave imaging is proposed. The present effort is focused on the reconstruction of conductivity (σ) and permittivity (εr) distri-butions aiming at a technique serving medical imaging, while perme-ability imaging can be easily incorporated to serve geophysical geophysical prospecting as well. This work constitutes the most recent one within the effort of extending our Modified Perturbation Method (MPM) from static to high and now microwave frequencies. MPM is an approximate method based on an exact Sensitivity or Jacobian matrix for an iterative update of an initial (σ, εr) guess until convergence. This method is proved almost immune of the problem inherent ill-posedness, but its robustness is actually gained by paying a penalty of compromised accuracy in the final achieved image. However, this image can be fine tuned by formulating and solving an exact inverse problem. Regarding the involved Jacobian matrix, this is evaluated through closed form expressions obtained through an Adjoint Network Theorem in conjuction with the electromagnetics reciprocity theorem. The field distributions required for its evaluation are readily available from the always required forward problem solutions on the assumed (σ, εr) distributions. Herein, the finite element method along with absorbing boundary conditions are employed for the forward problem electromagnetic simulation.
Citation
Dimitrios G. Drogoudis, George Kyriacou, and John Sahalos, "Microwave Tomography Employing an Adjoint Network Based Sensitivity Matrix," Progress In Electromagnetics Research, Vol. 94, 213-242, 2009.
doi:10.2528/PIER09060808
References

1. Keller, G. V., "Electrical properties of rocks and minerals," Handbook of Physical Constemts,, 553-770, S. P. Calrk (ed.), N. Y. Geological Society of America, 1988.

2. Pethig, R., "Dielectric properties of biological materials: Biophysical and medical applications," IEEE Transactions on Electrical Insulation, Vol. 19, 453-474, Oct. 1984.
doi:10.1109/TEI.1984.298769

3. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: Parts 1, 2 and 3," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

4. Fang, Q., P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Medica Imaging., Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152

5. Meaney, P. M., K. D. Paulsen, A. Hartov, and R. K. Crane, "Microwave imaging for tissue assessment: Initial evaluation in multitarget tissue-equivalent phantoms," IEEE Trans. Biomed. Eng., Vol. 43, 878-890, 1996.
doi:10.1109/10.532122

6. Meaney, P., K. Paulsen, and T. Ryan, "Two-dimensional hybrid element image reconstruction for TM illumination," IEEE Trans. Antennas and Propagation, Vol. 43, 239-247, Mar. 1995.
doi:10.1109/8.371992

7. Semenov, S., R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, A. Pavlovsky, V. Borisov, B. Voinov, G. Simonova, A. Starostin, V. Posukh, G. Tatsis, and V. Baranov, "Three-dimensional microwave tomography: Experimental prototype of the system and vector born reconstruction method," IEEE Trans. Biomed. Eng., Vol. 46, 937-946, Aug. 1999.
doi:10.1109/10.775403

8. Rekanos, I. T., M. S. Efraimidou, and T. D. Tsiboukis, "Microwave imaging: Inversion of scattered near-field measurements," IEEE Trans. Magnetics, Vol. 37, 3294-3297, Sep. 2001.
doi:10.1109/20.952598

9. Joachimowicz, N., C. Pichot, and J. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas and Propagation, Vol. 39, 1742-1753, Dec. 1991.
doi:10.1109/8.121595

10. Meaney, P. M., K. D. Paulsen, B. W. Pogue, and M. I. Miga, "Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery," IEEE Trans. Medical Imaging., Vol. 20, No. 2, 104-116, 2001.
doi:10.1109/42.913177

11. Kyriacou, G., C. Koukourlis, and J. Sahalos, "A reconstruction algorithm of electrical impedance tomography with optimal configuration of the driven electrodes ," IEEE Trans. Medical Imaging., Vol. 12, 430-438, Sep. 1993.
doi:10.1109/42.241870

12. Drogoudis, D. G., G. Trichopoulos, G. A. Kyriacou, and J. N. Sahalos, "A modified perturbation method for three-dimensional time harmonic impedance tomography," PIERS Online, Vol. 1, No. 2, 151-155, 2005.
doi:10.2529/PIERS041210144331

13. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "A sensitivity matrix based microwave tomography exploiting an adjoint network theorem," PIERS Online, Vol. 3, No. 8, 1217-1221, 2007.
doi:10.2529/PIERS070220140417

14. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "A three dimensional microwave tomography employing an adjoint network theorem based sensitivity matrix ," IEEE Trans. Magnetics, Vol. 45, No. 3, 1686-1689, 2009.
doi:10.1109/TMAG.2009.2012782

15. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, 1993.

16. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, 2006.

17. Oldenburg, D. W., "Practical strategies for the solution of large-scale electromagnetic inverse problems," Radio Science, Vol. 29, 1081-1099, 1994.
doi:10.1029/94RS00746

18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

19. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1997.

20. Semnani, A. and M. Kamyab, "Truncated cosine fourier series expansion methodfor solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404

21. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using Fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204

22. Shyu, J. J., C.-H. Chan, M.-W. Hsiung, P.-N. Yang, H.-W. Chen, and W.-C. Kuo, "Diagnosis of articular cartilage damage by polarization sensitive optical coherence tomography and the extracted optical properties," Progress In Electromagnetics Research, Vol. 91, 365-376, 2009.
doi:10.2528/PIER09022602

23. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

24. Mauriello, P. and D. Patella, "Geoelectrical anomalies imaged by polar and dipolar probability tomography," Progress In Electromagnetics Research, Vol. 87, 63-88, 2008.
doi:10.2528/PIER08092201

25. Děková, J., "Identification of defects in materials with surface conductivity distribution," PIERS Online, Vol. 4, No. 1, 11-15, 2008.

26. Tarvainen, T., M. Vauhkonen, V. Kolehmainen, J. P. Kaipio, and S. R. Arridge, "Utilizing the radiative transfer equation in optical tomography," PIERS Online, Vol. 4, No. 6, 655-660, 2008.
doi:10.2529/PIERS071219142458

27. Mauriello, P. and D. Patella, "Resistivity tensor probability tomography," Progress In Electromagnetics Research B, Vol. 8, 129-146, 2008.
doi:10.2528/PIERB08051604

28. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

29. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

30. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of svm-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

31. Roger, A. and F. Chapel, "Iterative methods for inverse problems," Progress In Electromagnetics Research, Vol. 5, 423-454, 1991.

32. Fang, Q., "Computational methods for microwave medical imaging,", PhD Thesis, Dartmouth College Hanover, New Hampshire, 2004.