1. Keller, G. V., "Electrical properties of rocks and minerals," Handbook of Physical Constemts,, 553-770, S. P. Calrk (ed.), N. Y. Geological Society of America, 1988. Google Scholar
2. Pethig, R., "Dielectric properties of biological materials: Biophysical and medical applications," IEEE Transactions on Electrical Insulation, Vol. 19, 453-474, Oct. 1984.
doi:10.1109/TEI.1984.298769 Google Scholar
3. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: Parts 1, 2 and 3," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
4. Fang, Q., P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Medica Imaging., Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152 Google Scholar
5. Meaney, P. M., K. D. Paulsen, A. Hartov, and R. K. Crane, "Microwave imaging for tissue assessment: Initial evaluation in multitarget tissue-equivalent phantoms," IEEE Trans. Biomed. Eng., Vol. 43, 878-890, 1996.
doi:10.1109/10.532122 Google Scholar
6. Meaney, P., K. Paulsen, and T. Ryan, "Two-dimensional hybrid element image reconstruction for TM illumination," IEEE Trans. Antennas and Propagation, Vol. 43, 239-247, Mar. 1995.
doi:10.1109/8.371992 Google Scholar
7. Semenov, S., R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, A. Pavlovsky, V. Borisov, B. Voinov, G. Simonova, A. Starostin, V. Posukh, G. Tatsis, and V. Baranov, "Three-dimensional microwave tomography: Experimental prototype of the system and vector born reconstruction method," IEEE Trans. Biomed. Eng., Vol. 46, 937-946, Aug. 1999.
doi:10.1109/10.775403 Google Scholar
8. Rekanos, I. T., M. S. Efraimidou, and T. D. Tsiboukis, "Microwave imaging: Inversion of scattered near-field measurements," IEEE Trans. Magnetics, Vol. 37, 3294-3297, Sep. 2001.
doi:10.1109/20.952598 Google Scholar
9. Joachimowicz, N., C. Pichot, and J. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas and Propagation, Vol. 39, 1742-1753, Dec. 1991.
doi:10.1109/8.121595 Google Scholar
10. Meaney, P. M., K. D. Paulsen, B. W. Pogue, and M. I. Miga, "Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery," IEEE Trans. Medical Imaging., Vol. 20, No. 2, 104-116, 2001.
doi:10.1109/42.913177 Google Scholar
11. Kyriacou, G., C. Koukourlis, and J. Sahalos, "A reconstruction algorithm of electrical impedance tomography with optimal configuration of the driven electrodes ," IEEE Trans. Medical Imaging., Vol. 12, 430-438, Sep. 1993.
doi:10.1109/42.241870 Google Scholar
12. Drogoudis, D. G., G. Trichopoulos, G. A. Kyriacou, and J. N. Sahalos, "A modified perturbation method for three-dimensional time harmonic impedance tomography," PIERS Online, Vol. 1, No. 2, 151-155, 2005.
doi:10.2529/PIERS041210144331 Google Scholar
13. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "A sensitivity matrix based microwave tomography exploiting an adjoint network theorem," PIERS Online, Vol. 3, No. 8, 1217-1221, 2007.
doi:10.2529/PIERS070220140417 Google Scholar
14. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "A three dimensional microwave tomography employing an adjoint network theorem based sensitivity matrix ," IEEE Trans. Magnetics, Vol. 45, No. 3, 1686-1689, 2009.
doi:10.1109/TMAG.2009.2012782 Google Scholar
15. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, 1993.
16. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, 2006.
17. Oldenburg, D. W., "Practical strategies for the solution of large-scale electromagnetic inverse problems," Radio Science, Vol. 29, 1081-1099, 1994.
doi:10.1029/94RS00746 Google Scholar
18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
19. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1997.
20. Semnani, A. and M. Kamyab, "Truncated cosine fourier series expansion methodfor solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404 Google Scholar
21. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using Fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204 Google Scholar
22. Shyu, J. J., C.-H. Chan, M.-W. Hsiung, P.-N. Yang, H.-W. Chen, and W.-C. Kuo, "Diagnosis of articular cartilage damage by polarization sensitive optical coherence tomography and the extracted optical properties," Progress In Electromagnetics Research, Vol. 91, 365-376, 2009.
doi:10.2528/PIER09022602 Google Scholar
23. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202 Google Scholar
24. Mauriello, P. and D. Patella, "Geoelectrical anomalies imaged by polar and dipolar probability tomography," Progress In Electromagnetics Research, Vol. 87, 63-88, 2008.
doi:10.2528/PIER08092201 Google Scholar
25. Děková, J., "Identification of defects in materials with surface conductivity distribution," PIERS Online, Vol. 4, No. 1, 11-15, 2008. Google Scholar
26. Tarvainen, T., M. Vauhkonen, V. Kolehmainen, J. P. Kaipio, and S. R. Arridge, "Utilizing the radiative transfer equation in optical tomography," PIERS Online, Vol. 4, No. 6, 655-660, 2008.
doi:10.2529/PIERS071219142458 Google Scholar
27. Mauriello, P. and D. Patella, "Resistivity tensor probability tomography," Progress In Electromagnetics Research B, Vol. 8, 129-146, 2008.
doi:10.2528/PIERB08051604 Google Scholar
28. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
29. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264 Google Scholar
30. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of svm-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801 Google Scholar
31. Roger, A. and F. Chapel, "Iterative methods for inverse problems," Progress In Electromagnetics Research, Vol. 5, 423-454, 1991. Google Scholar
32. Fang, Q., "Computational methods for microwave medical imaging,", PhD Thesis, Dartmouth College Hanover, New Hampshire, 2004. Google Scholar