Vol. 94
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-16
Efficient Approach for Sensitivity Analysis of Lossy and Leaky Structures Using FDTD
By
Progress In Electromagnetics Research, Vol. 94, 197-212, 2009
Abstract
An efficient approach is utilized for extracting the modal parameters of high frequency structures and their sensitivities with respect to all the design parameters. Using one FDTD simulation, the modal parameters of all the guided and leaky modes are extracted over the frequency band of interest. An adapted version of the matrix pencil method is utilized for efficient extraction of the modal parameters. In addition, using no extra simulations, the sensitivities of the propagation constants with respect to all the design parameters of the structure are extracted regardless of their number. The computational time is a small fraction of the cost of similar approaches.
Citation
Mohamed A. Swillam Ramy H. Gohary Mohamed H. Bakr Xun Li , "Efficient Approach for Sensitivity Analysis of Lossy and Leaky Structures Using FDTD," Progress In Electromagnetics Research, Vol. 94, 197-212, 2009.
doi:10.2528/PIER09061708
http://www.jpier.org/PIER/pier.php?paper=09061708
References

1. Young, G. O. and R. Vahldieck, "An efficient 2D FDTD algorithm using real variables," IEEE Microwave Guided Wave Lett., Vol. 3, May 1993.
doi:10.1109/75.208565

2. Jin, H. and R. Vahldieck, "Full-wave analysis of guiding structures using a 2-D array of 3-D TLM nodes," IEEE Trans. Microw. Theory Tech., Vol. 41, 472-477, March 1993.
doi:10.1109/22.223747

3. Xiao, J. K. and Y. Li, "Analysis for transmission characteristics of similar rectangular guide filled with arbitrarily-shaped inhomogeneous dielectric," Journal of Electromagnetic Waves and Application, Vol. 20, No. 3, 331-340, 2006.
doi:10.1163/156939306775701777

4. Zhao, Y.-J., K.-L. Wu, and K.-K. M. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Trans. Microw. Theory Tech., Vol. 50, 1844-{1848, July 2002.

5. Shahi, A. K., V. Singh, and S. P. Ojha, "Dispersion characteristics of electromagnetic waves in circularly cored highly birefringent waveguide having elliptical cladding," Progress In Electromagnetics Research, PIER 75, 51-62, 2007.

6. Pandey, P. C., A. Mishra, and S. P. Ojha, "Modal dispersion characteristics of a single mode dielectric optical waveguide with a guiding region cross-section bounded by two involuted spirals," Progress In Electromagnetics Research, PIER 73, 1-13, 2007.

7. Dydyk, M., "Microstrip directional couplers with ideal performance via single-element compensation," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 956-964, 1999.
doi:10.1109/22.769332

8. Swillam, M. A., M. H. Bakr, and X. Li, "Design optimization of compact wideband optical switch exploiting stair case index MMI," IEEE J. Lightwave Technology, Vol. 27, 80-87, January 2009.
doi:10.1109/JLT.2008.928398

9. Huang, W. P. and C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," IEEE J. Quantum Electron., Vol. 29, 2639-2649, October 1993.

10. Mansour, R. R. and R. H. MacPhie, "An improved transmission matrix formulation of cascaded discontinuities and its application to E-plane circuits," IEEE Trans. Microw. Theory Tech., Vol. 34, 1490-1498, December 1986.
doi:10.1109/TMTT.1986.1133568

11. Swillam, M. A., M. H. Bakr, and X. Li, "Full wave sensitivity analysis of guided wave structures using FDTD," Journal of Electromagnetic Waves and Application, Vol. 22, No. 16, 2135-2145(11), 2008.
doi:10.1163/156939308787522474

12. Nikolova, N. K., Y. Li, and M. H. Bakr, "Sensitivity analysis of scattering parameters with electromagnetic time-domain simulators," IEEE Trans. Microw. Theory Tech., Vol. 54, 1598-1610, April 2006.

13. Swillam, M. A., M. H. Bakr, and X. Li, "Accurate sensitivity analysis of photonic devices exploiting the finite-difference time-domain central adjoint variable method," J. Applied Optics, Vol. 46, No. 9, 1492-1499, March 2007.
doi:10.1364/AO.46.001492

14. Swillam, M. A., M. H. Bakr, N. K. Nikolova, and X. Li, "Adjoint sensitivity analysis of dielectric discontinuities using FDTD," Electromagnetics, Vol. 27, No. 2, 123-140, February 2007.
doi:10.1080/02726340601166233

15. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by fdtd method and comparing with capacitance and homogenization methods," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERL08021802

16. Mohammad-Amjadi, S. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402

17. Ali, M. and S. Sanyal, "FDTD analysis of rectangular waveguide in receiving mode as EMI sensors," Progress In Electromagnetics Research B, Vol. 2, 291-303, 2008.
doi:10.2528/PIERB07112901

18. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, 205-220, PIER 84, 2008.

19. Jiang, Y.-N., D.-B. Ge, and S.-J. Ding, "Analysis of TFSF boundary for 2D-FDTD with plane P-wave propagation in layered dispersive and lossy media," Progress In Electromagnetics Research, PIER 83, 157-172, 2008.

20. Liu, Y., Z. Liang, and Z. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm combined with interpolation technique," Progress In Electromagnetics Research, PIER 82, 95-107, 2008.

21. Wang, M. Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, PIER 81, 253-265, 2008.

22. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/MM-wave transistors)," Progress In Electromagnetics Research, PIER 77, 309-328, 2007.

23. Xiao, S.-Q., B.-Z. Wang, P. Du, and Z. Shao, "An enhanced FDTD model for complex lumped circuits," Progress In Electromagnetics Research, PIER 76, 485-495, 2007.

24. Hadi, M. F. and S. F. Mahmoud, "Optimizing the compact-FDTD algorithm for electrically large waveguiding structures," Progress In Electromagnetics Research, PIER 75, 253-269, 2007.

25. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, PIER 69, 341-359, 2007.

26. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, PIER 64, 69-80, 2006.

27. Feit, M. D. and J. A. Jr Fleck, "Computation of mode properties in optical ¯ber waveguides by a propagation beam method," J. Applied Optics, Vol. 19, 1154-1164, April 1980.

28. Ko, W. L. and R. Mittra, "A combination of FD-TD and Prony's method for analyzing microwave integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 39, 2176-2181, 1991.
doi:10.1109/22.106561

29. Sarkar, T. K. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas Propagat. Mag., Vol. 37, 48-55, February 1995.
doi:10.1109/74.370583

30. Feng, N. N., G. R. Zhou, and W. P. Huang, "Mode calculation by beam propagation method combined with digital signal processing technique," IEEE J. Quantum Electron., Vol. 39, 1111-1117 , September 2003.
doi:10.1109/JQE.2003.816096

31. Cover, T. M. and J. A. Thomas, Elements of Information Theory, John Wiley, 1991.

32. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., Vol. 43, 1460-1463, December 1995.
doi:10.1109/8.477075

33. Ansoft, available at http://www.ansoft.com/products/hf/hfss/.

34. Hu, J. and C. R. Menyuk, "Understanding leaky modes: Slab waveguide revisited," Adv. Opt. Photon., Vol. 1, 58-106, 2009.
doi:10.1364/AOP.1.000058

35. Huang, W.-P., C.-L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer boundary condition for modal analysis of optical waveguides: Leaky mode calculations," IEEE Photon. Technol. Lett., Vol. 8, No. 5, 652-654, 1996.
doi:10.1109/68.491569