1. Chen, C. C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Trans. Aerospace and Electronic Systems, Vol. 16, No. 1, 2-14, Jan. 1980.
doi:10.1109/TAES.1980.308873 Google Scholar
2. Park, S.-H., K.-K. Park, J.-H. Jung, H.-T. Kim, and K.-T. Kim, "ISAR imaging of multiple targets using edge detection and Hough transform," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2--3, 365-373, 2008.
doi:10.1163/156939308784160622 Google Scholar
3. Park, S.-H., K.-K. Park, J.-H. Jung, H.-T. Kim, and K.-T. Kim, "Construction of training database based on high frequency RCS prediction methods for ATR," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5--6, 693-703, 2008.
doi:10.1163/156939308784159390 Google Scholar
4. Ma, C. Z., T. S. Yeo, H. S. Tan, and G. Lu, "Interferometric ISAR imaging on squint model," Progress In Electromagnetics Research Letters, Vol. 2, 125-133, 2008.
doi:10.2528/PIERL07111805 Google Scholar
5. Ausherman, D. A., A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Development in radar imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 20, No. 4, 363-400, Jul. 1984.
doi:10.1109/TAES.1984.4502060 Google Scholar
6. Xue, W. and X.-W. Sun, "Target detection of vehicle volume detecting radar based on Wigner-Hough transform," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1513-1523, 2007.
doi:10.1163/156939307782000334 Google Scholar
7. Menon, M. M., E. R. Boureau, and P. J. Kolodzy, "An automatic ship classification system for ISAR imagery," The MIT Lincoln Laboratory Journal, Vol. 6, No. 2, 289-308, 1993. Google Scholar
8. Jung, J.-H. and H.-T. Kim, "Comparison of four feature extraction approaches based on Fisher's linear discriminant criterion in radar target recognition," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 251-265, 2007.
doi:10.1163/156939307779378781 Google Scholar
9. Lee, K. C. and J. S. Ou, "Radar target recognition by using linear discriminant algorithm on angular-diversity RCS," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2033 -2048, 2007.
doi:10.1163/156939307783152902 Google Scholar
10. Lim, T. S., V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "A SAR autofocus algorithm based on particle swarm optimization," Progress In Electromagnetics Research B, Vol. 1, 159-176, 2008.
doi:10.2528/PIERB07102501 Google Scholar
11. Lim, T. S., C.-S. Lim, V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "Autofocus algorithms performance evaluations using an integrated SAR product simulator and processor," Progress In Electromagnetics Research B, Vol. 3, 315-329, 2008.
doi:10.2528/PIERB07122101 Google Scholar
12. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR images based on entropy minimization," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 4, 1240-1251, Oct. 1999.
doi:10.1109/7.805442 Google Scholar
13. Wang, J. and D. Kasilingam, "Global range alignment for ISAR," IEEE Trans. Aerosp. Electron. Syst., Vol. 39, No. 1, 351-357, Jan. 2003.
doi:10.1109/TAES.2003.1188917 Google Scholar
14. Wang, J. and X. Liu, "Improved global range alignment for ISAR," IEEE Trans. Aerosp. Electron. Syst., Vol. 43, No. 3, 1070-1075, Jul. 2007.
doi:10.1109/TAES.2007.4383594 Google Scholar
15. Berizzi, F. and G. Cosini, "Autofocusing of inverse synthetic radar images using contrast optimization," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 32, 1191-1197, Jul. 1996. Google Scholar
16. Wang, J., X. Liu, and Z. Zhou, "Minimum-entropy phase adjustment for ISAR," Proceedings of Radar, Sonar and Navigation, Vol. 151, No. 4, 203-209, Aug. 2004.
doi:10.1049/ip-rsn:20040692 Google Scholar
17. Qian, S. and D. Chen, "Signal representation using adaptive normalized Gaussian functions," Signal Processing, Vol. 36, No. 1, 1-11, Mar. 1994.
doi:10.1016/0165-1684(94)90174-0 Google Scholar
18. George, A., F. Seber, and C. J. Wild, "Nonlinear Regression," Wiley-Interscience, 2003. Google Scholar
19. Su, D. Y., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetis Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603 Google Scholar
20. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
doi:10.2528/PIERB08062902 Google Scholar
21. Liu, B., L. Beghou, L. Pichon, and F. Costa, "Adaptive genetic algorithm based source identification with near-field scanning method," Progress In Electromagnetics Research B, Vol. 9, 215-230, 2008.
doi:10.2528/PIERB08070904 Google Scholar
22. Chen, H.-T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202 Google Scholar
23. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion cofficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605 Google Scholar
24. Cengiz, Y. and H. Tokat, "Linear antenna array design with use of genetic, memetic and tabu search optimization algorithms," Progress In Electromagnetics Research C, Vol. 1, 63-72, 2008.
doi:10.2528/PIERC08010205 Google Scholar
25. Rostami, A. and A. Yazdanpanah-Goharrizi, "Hybridization of neural networks and genetic algorithms for identification of complex bragg gratings ," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5--6, 643-664, 2008.
doi:10.1163/156939308784159598 Google Scholar
26. Hassan, R., B. Cohanim, and O. Weck, "A comparison of particle swarm optimization and the genetic algorithm," 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynami & Materials Conference, Apr. 18--21, 2005. Google Scholar
27. Li, J.-F., B.-H. Sun, Q.-Z. Liu, and L. Gong, "PSO-based fast optimization algorithm for broadband array antenna by using the cubic spline interpolation," Progress In Electromagnetis Research Letters, Vol. 4, 173-181, 2008.
doi:10.2528/PIERL08100407 Google Scholar
28. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 415-426, 2008. Google Scholar
29. Lu, Z. B., A. Zhang, and X. Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004 Google Scholar
30. Liu, X. F., Y. C. Jiao, and F. S. Zhang, "Conformal array antenna design using modified particle swarm optimization," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2--3, 207-218, 2008.
doi:10.1163/156939308784160820 Google Scholar
31. Park, S.-H., H.-T. Kim, and K.-T. Kim, "Stepped-frequency ISAR motion compensation using particle swarm optimization with an island model," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.
doi:10.2528/PIER08082107 Google Scholar