1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 8184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
3. Shelby, R. A., D. R. Smith, and S. Shultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
4. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585 Google Scholar
5. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
6. Ding, W., L. Chen, and C.-H. Liang, "Numerical study of Goos-Hänchen shift on the surface of anisotropic left-handed materials," Progress In Electromagnetics Research B, Vol. 2, 151-164, 2008.
doi:10.2528/PIERB07111403 Google Scholar
7. Tang, W. X., H. Zhao, X. Zhou, J. Y. Chin, and T. J. Cui, "Negative index material composed of meander line and SRRs," Progress In Electromagnetics Research B, Vol. 8, 103-114, 2008.
doi:10.2528/PIERB08121609 Google Scholar
8. Wang, J., S. Qu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Wide-angle polarization-independent planar left-handed metamaterials based on dielectric resonators," Progress In Electromagnetics Research B, Vol. 12, 243-258, 2009.
doi:10.2528/PIERB09011103 Google Scholar
9. Wang, J., S. Qu, H. Ma, J. Hu, Y. Yang, X. Wu, Z. Xu, and M. Hao, "A dielectric resonator-based route to left-handed metamaterials," Progress In Electromagnetics Research B, Vol. 13, 133-150, 2009.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
10. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000. Google Scholar
11. Li, Z. and T. Cui, "Novel waveguide directional couplers using left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1053-1062, 2007.
doi:10.2528/PIERL09032803 Google Scholar
12. Hsu, H. T. and C. J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
doi:10.1109/LAWP.2003.819679 Google Scholar
13. Baccarelli, P., P. Burghignoli, G. Lovat, and S. Paulotto, "Surface wave suppression in a double-negative metamaterial grounded slab," IEEE Antennas Wireless Propag. Lett., Vol. 2, 269-272, 2003.
doi:10.1109/TMTT.2005.845208 Google Scholar
14. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Fundamental modal properties of surface waves on metamaterial grounded slabs," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1431-1442, 2005.
doi:10.1002/mop.20677 Google Scholar
15. Bait-Suwailam, M. M. and Z. (D.) Chen, "Surface waves on a grounded double-negative (DNG) slab waveguide," Microwave Opt. Technol. Lett., Vol. 44, No. 6, 494-498, 2005.
doi:10.2528/PIER03102102 Google Scholar
16. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
doi:10.2528/PIER04011203 Google Scholar
17. Li, C., Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER06081601 Google Scholar
18. Shu, W. and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," Progress In Electromagnetics Research, Vol. 65, 103-123, 2006.
doi:10.1080/02726349108908274 Google Scholar
19. Paiva, C. R. and A. M. Barbosa, "A method for the analysis of biisotropic planar waveguides --- Application to a grounded chiroslabguide," Electromagnetics, Vol. 11, No. 1, 209-221, 1991. Google Scholar
20. Mariotte, F., P. Pelet, and N. Engheta, "A review of recent study of guided waves in chiral media," Progress In Electromagnetics Research, Vol. 09, 311-350, 1994.
doi:10.1163/156939395X00929 Google Scholar
21. Cory, H., "Chiral devices --- An overview of canonical problems," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 5-6, 805-829, 1995.
doi:10.1023/A:1022993400586 Google Scholar
22. Zhou, H. and K. Zhang, "Analysis of a metal-coated planar dielectric waveguide with chiral cladding," Int. J. Infrared Millim. Waves, Vol. 20, No. 11, 1977-1987, 1999.
doi:10.1002/1098-2760(20000720)26:2<137::AID-MOP20>3.0.CO;2-N Google Scholar
23. Zhou, H. and K. Zhang, "Mode characteristics in a metal-coated planar chiral dielectric waveguide," Microwave Opt. Technol. Lett., Vol. 26, No. 2, 137-140, 2000. Google Scholar
24. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.
doi:10.1163/156939307783134470 Google Scholar
25. Nair, A. and P. K. Choudhury, "On the analysis of field patterns in chirofibers," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2277-2286, 2007.
doi:10.1163/156939303322226356 Google Scholar
26. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, 695-706, 2003.
doi:10.1126/science.1104467 Google Scholar
27. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1016/j.photonics.2005.09.008 Google Scholar
28. Tretyakov, S., A. Sihvola, and L. Jylhä, "Backward-wave regime and negative refraction in chiral composites," Photonics and Nanostructures, Vol. 3, No. 2-3, 107-115, 2005.
doi:10.1163/156939308784150344 Google Scholar
29. Faryad, M. and Q. A. Naqvi, "Cylindrical reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 563-572, 2008.
doi:10.1103/PhysRevLett.95.123904 Google Scholar
30. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1364/OPEX.13.004974 Google Scholar
31. Jin, Y. and S. He, "Focusing by a slab of chiral medium," Optics Express, Vol. 13, No. 13, 4974-4979, 2005.
doi:10.1103/PhysRevB.79.035407 Google Scholar
32. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.132503 Google Scholar
33. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104 (R), 2009.
doi:10.1063/1.3120565 Google Scholar
34. Wang, B., J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Appl. Phys. Lett., Vol. 94, 151112, 2009.
doi:10.1103/PhysRevLett.102.023901 Google Scholar
35. Zhang, S., Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, 023901, 2009.
doi:10.1016/j.physleta.2005.11.010 Google Scholar
36. Jin, Y., J. He, and S. He, "Surface polaritons and slow propagation related to chiral media supporting backward waves," Phys. Lett. A, Vol. 351, 354-358, 2006. Google Scholar
37. Dong, J. F., Z. J. Wang, L. L. Wang, and B. Liu, "Novel characteristics of guided modes in chiral negative refraction waveguides," Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials, Metamaterials 2006, 517-520, Oct. 2006. Google Scholar
38. Zhang, C. and T. J. Cui, "Chiral planar waveguide for guiding single-mode backward wave," Opt. Commun., Vol. 280, No. 2, 359-363, 2007.
doi:10.2528/PIERL09032405 Google Scholar
39. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
doi:10.1016/j.optcom.2007.04.053 Google Scholar
40. Cheng, Q. and C. Zhang, "Waves in planar waveguide containing chiral nihility metamaterial," Opt. Commun., Vol. 276, No. 2, 317-321, 2007.
doi:10.2528/PIER08081201 Google Scholar
41. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.1163/156939309788019958 Google Scholar
42. Naqvi, Q. A., "Fractional dual solutions in grounded chiral nihility slab and their effect on outside field," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 773-784, 2009.
doi:10.1163/156939309788355216 Google Scholar
43. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves reflected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.2528/PIER06021802 Google Scholar
44. Wang, Z. J. and J. F. Dong, "Analysis of guided modes in asymmetric left-handed slab waveguides," Progress In Electromagnetics Research, Vol. 62, 203-215, 2006.
doi:10.2528/PIERB09012201 Google Scholar
45. Dong, J. and C. Xu, "Characteristics of guided modes in planar chiral nihility meta-material waveguides," Progress In Electromagnetics Research B, Vol. 14, 107-126, 2009. Google Scholar
46. Dong, J. F. and C. Xu, "Surface polaritons in planar chiral nihility meta-material waveguides," Opt. Commun., 2009.
doi:10.1016/j.optcom.2009.06.054 Google Scholar