1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.
2. Monti, G. and L. Tarricone, "Reduced-size broadband ATL-CRLH Rat-Race coupler," Proceedings of 36th European Microwave Conference, 125-128, Manchester, September 2006. Google Scholar
3. Lin, I-H., M. De Vincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747 Google Scholar
4. Antoniades, M. A. and G. V. Eleftheriades, "Compact linear lead/lag metamaterial phase shifters for broadband applications," Antennas and Wireless Propagation Letters, Vol. 2, 103-106, 2003.
doi:10.1109/LAWP.2003.815280 Google Scholar
5. Abdelaziz, A. F., T. M. Abuelfadl, and O. L. Elsayed, "Realization of composite right/left-handed transmission line using coupled lines," Progress In Electromagnetics Research, Vol. 92, 299-315, 2009.
doi:10.2528/PIER09040305 Google Scholar
6. Li, Y., Q. Zhu, Y. Yan, S.-J. Xu, and B. Zhou, "Design of a 1×20 series feed network with composite right/left-handed transmission line," Progress In Electromagnetics Research, Vol. 89, 311-324, 2009.
doi:10.2528/PIER08123104 Google Scholar
7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
8. Bahl, I. J. and D. Conway, "L- and S-band compact octave bandwidth 4-bit MMIC phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 293-299, 2008.
doi:10.1109/TMTT.2007.914636 Google Scholar
9. Lim, S., "Slow-wave effect of electronically-controlled composite right/left-handed (CRLH) transmission line," IEICE Transactions on Communications, Vol. 91, 1665-1668, 2008.
doi:10.1093/ietcom/e91-b.5.1665 Google Scholar
10. Bialkowski, M. E. and N. C. Karmakar, "Design of compact L-Band 180ο phase shifters," Microwave Optical Technology Letters, Vol. 22, 144-148, 1999.
doi:10.1002/(SICI)1098-2760(19990720)22:2<144::AID-MOP19>3.0.CO;2-D Google Scholar
11. Ayasli, Y., S. W. Miller, R. Mozzi, and L. K. Hanes, "Wide-band monolithic phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 1710-1714, 1984.
doi:10.1109/TMTT.1984.1132919 Google Scholar
12. Hayashi, H. and M. Muraguchi, "An MMIC active phase shifter using a variable resonant circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2021-2026, 1999.
doi:10.1109/22.795078 Google Scholar
13. Rebeiz, G. M., RF MEMS: Theory Design and Technology, John Wiley & Sons, 2003.
14. Ko, Y. J., J. Y. Park, and J. U. Bu, "Integrated 3-bit RF MEMS phase shifter with constant phase shift for active phased array antennas in satellite broadcasting systems," 12th Int. Conf. on Trsducers, Solid-State Sensors, Actuators and Microsystems, 1788-1791, Boston, June 2003. Google Scholar
15. Ocera, A., E. Sbarra, R. Vincenti Gatti, and R. Sorrentino, "An Innovative reconfigurable reflection-type phase shifter for dual band WLAN applications," Proceedings of 36th European Microwave Conference, 64-67, Manchester, September 2006. Google Scholar
16. Lakshminarayananv, B. and T. M. Weller, "Design and modelling of 4-bit slow-wave MEMS phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 120-127, 2006.
doi:10.1109/TMTT.2005.860332 Google Scholar
17. Lee, S., J. Park, H. Kim, J. Kim, Y. Kim, and Y. Kwon, "Low-loss analog and digital reflection-type MEMS phase shifters with 1 : 3 bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 211-219, 2004.
doi:10.1109/TMTT.2003.821275 Google Scholar
18. Ocera, A., P. Farinelli, F. Cherubini, P. Mezzanotte, R. Sorrentino, B. Margesin, and F. Giacomozzi, "A MEMS-reconfigurable power divider on high resistivity silicon substrate," IEEE MTT-S International Microwave Symposium, 501-504, Honolulu, June 2007. Google Scholar
19. Armaroli, C., L. Ferrario, F. Giacomozzi, L. Lorenzelli, B. T. Margesin, and K. Rangra, "A silicon based MEMS technology for electrostatically actuated SPDT RF switches," European Space Components Conference (ESCCON) 2002, 41, Toulouse, September 2002. Google Scholar
20. Perruisseau-Carrier, J., T. Lisec, and A. K. Skrivervik, "Circuit model and design of silicon-integrated CRLH-TLs analogically controlled by MEMS," Microwave Optical Technology Letters, Vol. 48, 2496-2499, 2006.
doi:10.1002/mop.22014 Google Scholar
21. Perruisseau-Carrier, J., K. Topalli, and T. Akin, "Low-loss Ku-band artificial transmission line with MEMS tuning capability," IEEE Microwave and Wireless Components Letters, Vol. 19, 377-379, 2009.
doi:10.1109/LMWC.2009.2020022 Google Scholar
22. Afrang, S. and B. Y. Majlis, "Small size Ka-band distributed Mems phase shifters using inductors," Progress In Electromagnetics Research B, Vol. 1, 95-113, 2008.
doi:10.2528/PIERB07101903 Google Scholar