1. Pozar, D. M., Microwave Engineering, 2nd edition, Wiley, 1998.
2. Tanaka, S., N. Shimomura, and K. Ohtake, "Active circulators --- The realization of circulators using transistors," Proc. IEEE, Vol. 53, 260-267, Mar. 1965.
doi:10.1109/PROC.1965.3683 Google Scholar
3. Smith, M., "GaAs monolithic implementation of active circulators," IEEE MTT-S Int. Microwave Symp. Digest, 1015-1015, May 1988. Google Scholar
4. Hara, S., T. Tokumitsu, and M. Aikawa, "Novel unilateral circuits for MMIC circulators," IEEE Trans. Microw. Theory Technol., Vol. 38, No. 8, 1399-1406, 1990.
doi:10.1109/22.58677 Google Scholar
5. Bahl, J., "The design of a 6-port active circulator," IEEE MTT-S Int. Microwave Symp. Digest, 1011-1014, May 1988. Google Scholar
6. Cryan, M. and P. S. Hall, "An integrated active circulator antenna," IEEE Microw. Guided Wave Lett., Vol. 7, No. 6, 190-191, 1997.
doi:10.1109/75.594860 Google Scholar
7. Saavedra, C. E. and Y. Zheng, "Active quasi-circulator realization with gain elements and slow-wave couplers," IET Microw. Antennas Propag., Vol. 1, No. 4, 1020-1023, 2007.
doi:10.1049/iet-map:20060176 Google Scholar
8. Razavipour, H., R. Saan, G. Askari, F. Fesharaki, and H. M. Sadeghi, "A new dual band high power ferrite circulator," Progress In Electromagnetics Research C, Vol. 10, 15-24, 2009.
doi:10.2528/PIERC09050504 Google Scholar
9. Li, Z. and T. J. Cui, "Novel waveguide directional couplers using left handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1053-1062, 2007. Google Scholar
10. Nedil, M. and T. A. Denidni, "Analysis and design of an ultra wideband directional coupler," Progress In Electromagnetics Research B, Vol. 1, 291-305, 2008.
doi:10.2528/PIERB07110704 Google Scholar
11. Wang, E. C., S. J. Fang, M. J. Fan, and P. Chen, "FDTD analysis of a novel 8 mm-E plane junction waveguide circulator," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1951-1958, 2007.
doi:10.1163/156939307783152948 Google Scholar
12. Ramesh, M., D. Packiaraj, and A. T. Kalghatgi, "A compact branch line coupler using defected ground structure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 267-276, 2008.
doi:10.1163/156939308784160659 Google Scholar
13. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel enhanced and miniaturized 90-deg coupler for 3G mixers," Progress In Electromagnetics Research Letters, Vol. 3, 43-50, 2008.
doi:10.2528/PIERL08012702 Google Scholar
14. Chang, C.-P., C.-C. Su, S.-H. Hung, and Y.-H. Wang, "Unequal Wilkinson power divider with EBG CPW," Progress In Electromagnetics Research Letters, Vol. 8, 151-159, 2009.
doi:10.2528/PIERL09032801 Google Scholar
15. Guo, Y., Y. Xu, L. Xia, and R. Xu, "Efficient optimization of a Ka band branch waveguide power divider," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 17-26, 2008.
doi:10.1163/156939308783122698 Google Scholar
16. Guo, Y. and R. Xu, "Ultra wideband power slitting/combining techniques using zero-degree left handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1109-1118, 2007. Google Scholar
17. Zhang, J., B. Cui, J.-Z. Gu, and X.-W. Sun, "A harmonic suppressed Wilkinson power divider using complementary split ring resonator (CSRRS)," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 811-819, 2007.
doi:10.1163/156939307780749165 Google Scholar
18. Lin, X. Q., Q. Cheng, R. P. Liu, D. Bao, and T. J. Cui, "Compact resonator couplers and power dividers designed with simplified meta structures," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1663-1672, 2007. Google Scholar
19. Yang, T., C. Liu, L. Yan, and K. Huang, "A compact dual-band power divider using planar artificial transmission lines for GSM/DCS applications," Progress In Electromagnetics Research Letters, Vol. 10, 185-191, 2009 .
doi:10.2528/PIERL09073107 Google Scholar
20. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel miniaturized Wilkinson power divider for 3G mobile receivers," Progress In Electromagnetics Research Letters, Vol. 3, 9-16, 2008.
doi:10.2528/PIERL08012603 Google Scholar
21. Fan, F., Z. Yan, and J. Jiang, "Design of a novel compact power divider with harmonic suppression," Progress In Electromagnetics Research Letters, Vol. 5, 151-157, 2008.
doi:10.2528/PIERL08111808 Google Scholar
22. Hee-Tae, A. and D. Allstot, "A 0.5-8.5 GHz fully differential CMOS distributed amplifier," IEEE J. Solid-state Circuits, Vol. 37, No. 6, 985-993, Jun. 2000. Google Scholar
23. Liu, R.-C., C.-S. Lin, K.-L. Deng, and H. Wang, "A 0.5-14-GHz 10.6-dB CMOS cascade distributed amplifier," Proc. IEEE VLSI Circuits Symp., 139-140, 2003. Google Scholar
24. Amaya, R. E., N. Tam, and C. Plett, "A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguides," Proc. IEEE Radio Freq. Integr. Circuits (RFIC) Symp., Vol. 1, 193-196, 2004.
doi:10.1109/RFIC.2004.1320568 Google Scholar
25. Liu, R.-C., K.-L. Deng, and H. Wang, "A 0.6-22-GHz broadband CMOS distributed amplifier," Proc. IEEE Radio Freq. Integr. Circuits (RFIC) Symp., 103-106, 2003. Google Scholar
26. Wang, T., C.-H. Chen, Y.-S. Lin, and S.-S. Lu, "A micromachined CMOS distributed amplifier by CMOS compatible ICP deep-trench technology," IEEE Electron Device Lett., Vol. 27, No. 4, 291-293, 2006.
doi:10.1109/LED.2006.871857 Google Scholar
27. Tsai, M., H. Wang, J. Kuan, and C. Chang, "A 70 GHz cascaded multistage distributed amplifier in 90nm CMOS technology," Proc. Int. Solid-state Conf., Vol. 1, 402-403, 2005. Google Scholar
28. Chu, S. L. G., Y. Tajima, J. B. Cole, A. Platzker, and M. J. Schindler, "A novel 4-18 GHz monolithic matrix distributed amplifier," IEEE MTT-S Int. Microwave Symp. Dig., 291-295, Jun. 1989.
doi:10.1109/MWSYM.1989.38720 Google Scholar
29. Wang, T., C.-H. Chen, Y.-S. Lin, and S.-S. Lu, "A micromachined CMOS distributed amplifier by CMOS compatible ICP deep-trench technology," IEEE Electron Device Lett., Vol. 27, No. 4, 291-293, 2006.
doi:10.1109/LED.2006.871857 Google Scholar