1. He, W., R. Jin, J. Geng, and M. Lampe, "Multiband dual patch antennas with polarization compensation for WLAN applications," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1907-1911, 2007.
doi:10.1002/mop.22584 Google Scholar
2. He, W., R., Jin, J., Geng, and B. Gao, "Multiband antenna system with polarization conversion for wlan applications," Microwave and Optical Technology Letters, Vol. 49, No. 7, 1772-1777, 2007.
doi:10.1002/mop.22501 Google Scholar
3. Raj, R. K., M. Joseph, B. Paul, and P. Mohanan, "Compact planar multiband antenna for GPS, DCS, 2.4-5.8 GHz WLAN applications," Electronics Letters, Vol. 41, No. 6, 290-291, 2005.
doi:10.1049/el:20058035 Google Scholar
4. Zhong, Q., Y. Li, H. Jiang, and Y. Long, "Design of a novel dual-frequency microstrip patch antenna for WLAN applications," Antennas and Propagation Society International Symposium, 2004. IEEE, Vol. 1, 277-280, June 2004. Google Scholar
5. Archevapanich, T. and N. Anantrasirichai, "Inversed E-shape slot antenna for WLAN applications," International Conference on Control, Automation and Systems 2007, 2854-2857, COEX, Seoul, Korea, Oct. 17-20, 2007. Google Scholar
6. Janapsatya, J. and K. P. Esselle, "Multi-band WLAN antennas based on the principle of duality," Antennas and Propagation Society International Symposium 2006, IEEE, 2679-2682, 2006.
doi:10.1109/APS.2006.1711154 Google Scholar
7. Wong, K.-L. and J.-S. Chen, "Cavity-model analysis of a slot-coupled cylindrical-rectangular microstrip antenna," Microwave and Optical Technology Letters, Vol. 9, No. 20, 124-127, 1995.
doi:10.1002/mop.4650090305 Google Scholar
8. Chen, J.-S. and K.-L. Wong, "Input impedance of a slot-coupled cylindrical-circular microstrip patch antenna," Microwave and Optical Technology Letters, Vol. 11, No. 1, 21-24, 1996.
doi:10.1002/(SICI)1098-2760(199601)11:1<21::AID-MOP6>3.0.CO;2-R Google Scholar
9. Dahele, J. S., R. J. Mitchell, K. M. Luk, and K. F. Lee, "Effect of curvature on characteristics of rectangular patch antenna," Electron. Lett., Vol. 23, 748-749, 1987.
doi:10.1049/el:19870530 Google Scholar
10. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
11. Qu, D. and L. Shafai, "The performance of microstrip patch antennas over high impedance EBG substrates withinand outside its bandgap," 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceeding, 423-426, 2005. Google Scholar
12. Jin, N., A. Yu, and X. Zhang, "An enhanced 2 2 antenna array based on a dumbbell EBG structure," Microwave and Optical Technology Letters, Vol. 39, 395-399, 2003.
doi:10.1002/mop.11228 Google Scholar
13. He, W., R. Jin, and J. Geng, "Low RCS and high performances of microstrip antenna using fractal UC-EBG ground," IET Microwaves, Antennas and Propagation, Vol. 1, No. 5, 986-991, 2007.
doi:10.1049/iet-map:20070012 Google Scholar
14. He, W., R. Jin, J. Geng, and G. Yang, "2 x 2 array with UC-EBG ground for low RCS and high gain," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1418-1422, 2007.
doi:10.1002/mop.22440 Google Scholar
15. Brown, E. B., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, No. 2, 404, 1993.
doi:10.1364/JOSAB.10.000404 Google Scholar
16. Radistic, V., Y. Qian, R. Cocciloli, et al. "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Letters, Vol. 8, No. 2, 69, 1998.
doi:10.1109/75.658644 Google Scholar
17. Matttew, M. B., B. B. John, O. E. Henry, et al. "Two dimentional photonic crystals fabry-perror resonators with lossy dielectrics," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 11, 2085, 1999. Google Scholar
18. Qian, Y., D. Sievenpiper, V. Raisic, et al. "A novel approach for gain and bandwidth enhancement of patch antennas," RAWON'98 Proceedings, 221 1998.
19. Wang, X., Y. Hao, and P. S. Hall, "Dual-band resonances of a patch antenna on UC-EBG substrate," Asia-Pacific Microwave Conference Proceedings, Vol. 1, 4-8, 2005.
20. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Radiation properties enhancement of triangular patch microstrip antenna array using hexagonal defected ground structure," Progress In Electromagnetics Research M, Vol. 5, 101-109, 2008.
doi:10.2528/PIERM08101601 Google Scholar
21. Lin, X.-C. and L.-T. Wang, "A wideband CPW-fed patch antenna with defective ground plane," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 3717-3720, 2004. Google Scholar
22. Wong, K. L., J. S. Kuo, and T. W. Chiou, "Compact microstrip antennas with slots loaded in the ground plane," Antennas and Propagation 11th International Conference, Vol. 2, 623-626, Apr. 2001.
23. Lin, S.-Y. and K.-L. Wong, "Effects of slotted and photonic bandgap ground planes on the charaetsristics of an air-substrate annular-ring patch antenna at TM21 mode," Proceeding of APMC 2001, Vol. 2, 655-658, 2001. Google Scholar
24. Wang, L.-T. and J.-S. Sun, The compact, broadband microstnp antenna with defective ground plane, Vol. 2, 622-624, IEE International Conference on Antenna and Propagation, Apr. 2003.
25. Liu, H., Z. Li, X. Sun, and J. Mao, "Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 55-56, 2005.
doi:10.1109/LMWC.2004.842809 Google Scholar
26. Guerin, N., C. Hafner, X. Cui, et al. "Compact directive antennas using frequency-selective surface (FSS)," 2005 Asia-Pacific Microwave Conference Proceedings, Vol. 1, 519, 2005. Google Scholar
27. Richards, W., "An improved theory for microstrip patches," IEE Proc. Part. H, Vol. 132, 93-98, 1985. Google Scholar
28. Ansarizadeh, M. and A. Ghorbani, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403 Google Scholar
29. Abboud, F., J. P. Damiano, and A. Papiernik, "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," Microwaves, Antennas and Propagation, IEE Proceedings H, Vol. 135, No. 5, 323-326, 1988. Google Scholar
30. Park, J.-S., "An equivalent circuit and modeling method for defected ground structure and its application to the design of microwave circuits ," Microwave Journal, Vol. 46, No. 11, 22-38, Nov. 2008. Google Scholar
31. Hai, S., H. Guang, and H. Wei, "A broadband dual-polarized triangle patch antenna with DGS," Journal of Microwaves, Vol. 21, No. 4, 27-30, Aug. 2005 (in Chinese). Google Scholar
32., http:nnwww.cst.denContentnCompanynAcademic.aspx.. Google Scholar
33. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 9, No. 4, 259-319, Dec. 1998. Google Scholar
34. Geng, J., R. Jin, W. Wang, W. He, M. Ding, Q. Wu, X. Rui, G. Yang, and Z. Fang, "A new quasi-omnidirectional vertical polarisation antenna with low profile and high gain for DTV on vehicle," Microwaves, Antennas & Propagation, IET, Vol. 1, No. 4, 918-924, Aug. 2007.
doi:10.1049/iet-map:20060264 Google Scholar