1. Hutter, R. G. E. and S. W. Harrison, Beam Wave Electronics in Microwave Tubes, Princeton University Press, 1960.
2. Dohler, G., D. Gallagher, and J. Richards, "Millimeter wave folded waveguide TWTs," Vacuum. Electron. Ann. Rev. Proc., 15-20, 1993. Google Scholar
3. Bhattacharjee, S., J. H. Booske, C. L. Kory, D. W. Van DerWeide, S. Limbach, J. D. Welter, M. R. Lopez, R. M. Gilgenbach, R. L. Ives, M. E. Read, R. Divan, and D. C. Mancini, "Folded waveguide traveling-wave tube sources for terahertz radiation," IEEE Transactions on Plasma Science, Vol. 32, No. 3, 1002-1014, June 2004.
doi:10.1109/TPS.2004.828886 Google Scholar
4. Stuart, R. A., A. I. Al-Shamma'a, and J. Lucas, "Compact tuneable terahertz source," 2nd EMRS DTC Technical Conference-Edinburgh, 2005.
5. Singh, G., "Analytical study of the interaction structure of vane-loaded gyro-traveling wave tube amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402 Google Scholar
6. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes," IEEE Transactions on Electron Devices, Vol. 52, No. 5, 685-694, May 2005.
doi:10.1109/TED.2005.845798 Google Scholar
7. Han, S.-T., J.-I. Kim, and G.-S. Park, "Design of a folded waveguide traveling-wave tube," Microwave and Optical Technology Letters, Vol. 38, No. 2, 161-165, July 20, 2003.
doi:10.1002/mop.11003 Google Scholar
8. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGeP2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806 Google Scholar
9. Wang, W., Y. Wei, G. Yu, Y. Gong, M. Huang, and G. Zhao, "Review of the novel slow-wave structures for high-power traveling-wave tube," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 9, 1469-1484, September 2003.
doi:10.1023/A:1025535808995 Google Scholar
10. Kory, C. L., J. H. Booske, W.-J. Lee, S. Gallagher, D. W. Van Der Weide, S. Limbach, and S. Bhattacharjee, "THz radiation using high power, microfabricated, wideband TWTs," International Microwave Symposium Digest 2, IEEE MTT-S International, 1265-1268, 2002. Google Scholar
11. Bhattacharjee, S., J. H. Booske, C. L. Kory, D. W. Van DerWeide, S. Limbach, M. Lopez, R. M. Gilgenbach, and M. Genack, "THz radiation using compact folded waveguide TWT oscillators," International Microwave Symposium Digest 2, IEEE MTT-S International, 1331-1334, 2003. Google Scholar
12. Park, G.-S., H.-J. Ha, W.-K. Han, S.-S. Jung, C.-W. Baik, and A. Ganguly, "Investigation of folded waveguide TWT," 25th International Conference on Infrared and Millimeter Waves, 279-280, 2000.
13. Glover, L. K. and R. H. Pantell, "Simplified analysis of free-electron lasers using Madey's theorem," IEEE Journal of Quantum Electronics, Vol. 21, No. 7, July 1985. Google Scholar
14. Qin, P.-Y., C.-H. Liang, and B. Wu, "Novel dual-mode bandpass filter with transmission zeros using substrate integrated waveguide cavity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5--6, 723-730, 2008.
doi:10.1163/156939308784159417 Google Scholar
15. Gittins, J. F., Power Travelling-wave Tubes, The English Universities Press Ltd., 1964.
16. Pierce, J. R., Traveling-wave Tubes, D. Van Nostrand Company, Inc., 1950.
17. Liu, S., "Study of propagating characteristics for folded waveguide TWT in millimeter wave," International Journal of Infrared and Millimeter Waves, Vol. 21, No. 4, 655-660, 2000.
doi:10.1023/A:1006696106798 Google Scholar
18. Harvey, A. F., "Periodic and guiding structures at microwave frequencies," IRE Trans. Microwave Theory Techn., Vol. 8, 30-61, 1960.
doi:10.1109/TMTT.1960.1124658 Google Scholar
19. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, 1992.
20. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701 Google Scholar
21. Psarros, I. and I. D. Chremmos, "Resonance splitting in two to traveling-wave optical resonators," Progress In Electromagnetics Research, PIER 87, 197-214, 2008. Google Scholar
22. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "A finite element method code to analyse waveguide dispersion," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 397-408, 2007.
doi:10.1163/156939307779367396 Google Scholar
23. Sjoberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304 Google Scholar
24. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.
doi:10.2528/PIERB09082802 Google Scholar
25. Kalyanasundaram, N. and G. N. Babu, "Dispersion of electromag netic waves guided by an open tape Helix I," Progress In Electromagnetics Research B, Vol. 16, 311-331, 2009.
doi:10.2528/PIERB09052608 Google Scholar
26. Stuart, R. A., "The design of folded waveguide travelling wave tubes,", A report for FELDEC, October 16, 2004. Google Scholar
27. Nie, Z. P., S. Yan, S. He, and J. Hu, "On the basis functions with traveling wave phase factor for efficient analysis of scattering from electrically large targets," Progress In Electromagnetics Research, PIER 85, 83-114, 2008. Google Scholar
28. Su, D. Y., D. M. Fu, and Z. H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, PIER 80, 381-392, 2008. Google Scholar
29. Vaish, A. and H. Parthasarathy, "Analysis of a rectangular waveguide using finite element method," Progress In Electromagnetics Research C, Vol. 2, 117-125, 2008.
doi:10.2528/PIERC08031801 Google Scholar
30. Shahi, A. K., V. Singh, and S. P. Ojha, "Dispersion characteristics of electromagnetic waves in circularly cored highly birefringent waveguide having elliptical cladding," Progress In Electromagnetics Research, PIER 75, 51-62, 2007. Google Scholar
31. Mondal, M. and A. Chakrabarty, "Resonant length calculation and radiation pattern synthesis of longitudinal slot antenna in rectangular waveguide," Progress In Electromagnetics Research Letters, Vol. 3, 187-195, 2008.
doi:10.2528/PIERL08042204 Google Scholar
32. Marcuvitz, N., Waveguide Handbook, Peregrinus, Stevenage, 1986.
33. Che, W., C. Li, D. Wang, L. Xu, and Y. Chow, "Investigation on the ohmic conductor losses in substrate-integrated waveguide and equivalent rectangular waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 769-780, 2007.
doi:10.1163/156939307780749101 Google Scholar
34. Eichmeier, J. A. and M. Thumm, Vacuum Electronics: Components and Devices, Springer, 2008.
35. Carle, P. L., "New accurate and simple equivalent circuit for circular E-plane bends in rectangular waveguide," Electronics Letters, Vol. 23, No. 10, 531-532, May 7, 1987.
doi:10.1049/el:19870383 Google Scholar
36. Panda, D. K. K., A. Chakrabarty, and S. R. Choudhury, "Analysis of Co-channel interference at waveguide joints using multiple cavity modeling technique," Progress In Electromagnetics Research Letters, Vol. 4, 91-98, 2008.
doi:10.2528/PIERL08042704 Google Scholar
37. Sumathy, M., K. J. Vinoy, and S. K. Datta, "Equivalent circuit analysis of serpentine foldedwaveguide slow-wave structures for millimeter-wave travelingwave tubes," International Journal of Infrared and Millimeter Waves, Vol. 30, No. 2, 151-158, February 2009. Google Scholar
38. Stuart, R. A., "The gain of a FWTWT,", A report for FELDEC, November 12, 2004. Google Scholar
39. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 1998.
40. Kumar, D., P. K. Choudhury, and O. N. Singh, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, PIER 80, 409-420, 2008. Google Scholar