Vol. 104
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-28
Optimizing Nano-Optical Antenna for the Enhancement of Spontaneous Emission
By
Progress In Electromagnetics Research, Vol. 104, 313-331, 2010
Abstract
We study the characteristics of nano-optical antenna made of two gold nano-particles by three dimensional numerical calculations in visible and near infrared bands. To carry the computational burden and guarantee the precision and speed of a three dimensional FDTD calculation, adaptive mesh refinement technology is used. In this paper, we first highlight the concrete way of controlling the emitter position and orientation to fulfill the requirements of larger spontaneous emission enhancement. Then, we analyze the far field distribution and find that the far fied directivity is strongly influenced by surface plasmon polaritons (SPPs). Choosing the incident wavelength of 600 nm, we compute the decay rates and radiant efficiency as a function of antenna geometry limitations. Next, the particle aspect ratio is optimized, and we obtain that L/R = 4 is the best for our optical-antenna. Furthermore, we present a spectrum analysis. Around 5000 fold spontaneous emission enhancement is successfully achieved. Finally, we find a piecewise linearity relationship between the particle length and resonant wavelength.
Citation
Hui Gao, Kang Li, Fanmin Kong, Hao Xie, and Jia Zhao, "Optimizing Nano-Optical Antenna for the Enhancement of Spontaneous Emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.
doi:10.2528/PIER09111607
References

1. Muhlschlegel, P., H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science, Vol. 308, 1607-1609, 2005.
doi:10.1126/science.1111886

2. Krenn, J. R., A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudnnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett., Vol. 82, No. 12, 2590-2593, 1999.
doi:10.1103/PhysRevLett.82.2590

3. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, No. 5, 057401, 2003.
doi:10.1103/PhysRevLett.90.057401

4. Nehl, C. L., H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano. Lett., Vol. 6, 683-688, 2006.
doi:10.1021/nl052409y

5. Fischer, H. and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express, Vol. 16, No. 12, 9144-9154, 2008.
doi:10.1364/OE.16.009144

6. Kong, F., K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

7. Kong, F., K. Li, H. Huang, B.-I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224

9. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

10. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Phys. Rev., Vol. 69, 681, 1946.

11. Drexhage, K. H., "Interaction of light with monomolecular dye layers," Prog. Opt., Vol. 12, 164, 1974.

12. Chance, R. R., A. Prock, and R. Silbey, "Molecularfluorescence and energy transfer near interfaces," Adv. Ch. Phys., Vol. 37, 1, 1978.
doi:10.1002/9780470142561.ch1

13. Ruppin, R., "Decay of an excited molecule near a small metal sphere," J. Chem. Phys., Vol. 76, 1681-1684, 1982.
doi:10.1063/1.443196

14. Blanco, L. A. and F. J. Garcia de Abajo, "Spontaneous light emission in complex nanostructures," Phys. Rev. B, Vol. 69, No. 20, 205414, 2004.
doi:10.1103/PhysRevB.69.205414

15. Hulet, R. G., E. S. Hilfer, and D. Kleppner, "Inhibited spontaneous emission by a rydberg atom," Phys. Rev. Lett., Vol. 55, No. 20, 2137, 1985.
doi:10.1103/PhysRevLett.55.2137

16. Xu, Y., J. S. Vu·ckovic, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B, Vol. 16, 465, 1999.
doi:10.1364/JOSAB.16.000465

17. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059

18. Hermann, C. and O. Hess, "Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap," J. Opt. Soc. Am. B, Vol. 19, 3013-3018, 2002.
doi:10.1364/JOSAB.19.003013

19. Femius Koenderink, A., L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos, "Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals," Phys. Rev. Lett., Vol. 88, No. 14, 143903, 2002.
doi:10.1103/PhysRevLett.88.143903

20. Rogobete, L., F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett., Vol. 32, No. 12, 1623-1625, 2007.
doi:10.1364/OL.32.001623

21. Mohammadi, A., V. Sandoghdar, and M. Agio, "Gold nanorods and nanospheroids for enhancing spontaneous emission," New J. Phys., Vol. 10, 105015, 2008.
doi:10.1088/1367-2630/10/10/105015

22. Kuhn, S., U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett., Vol. 97, No. 1, 017402-4, 2006.
doi:10.1103/PhysRevLett.97.017402

23. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett., Vol. 96, No. 11, 113002-4, 2006.
doi:10.1103/PhysRevLett.96.113002

24. Liu, Y. X. and C. D. Sarris, "AMR-FDTD: A dynamically adaptive mesh refinement scheme for the finite-difference time-domain technique," IEEE Antennas and Propagation Society International Symposium, Vol. 1A, 134-137, 2005.

25. Berger, M. J. and J. R. Oliger, "Adaptive mesh refinement for hyperbolic partical differential equation," J. Comput. Phys., Vol. 53, 484-512, 1984.
doi:10.1016/0021-9991(84)90073-1

26. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

27. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.

28. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

29. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

30. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181

31. Agio, M., G. Mori, F. Kaminski, L. Rogobete, S. Kuhn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jackel, and H. H. Sol, "Engineering gold nanostructures to enhance the emission of quantum emitters," Proc. SPIE, Vol. 6717, 67170, 2007.
doi:10.1117/12.754367

32. Taminiau, T. H., F. D Stefani, and N. F. V. Hulst, "Single emitters coupled to plasmonic nano-antennas: Angular emission and collection efficiency," New J. Phys., Vol. 10, 105005, 2008.
doi:10.1088/1367-2630/10/10/105005

33. Huang, Y. and K. Boyle, "Popular antennas," Antennas: From Theory to Practice, 129-135, 2008.