Vol. 100
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-01-05
Application of the Improved Matrix Type FDTD Method for Active Antenna Analysis
By
Progress In Electromagnetics Research, Vol. 100, 245-263, 2010
Abstract
An improved finite-difference time-domain (FDTD) method has been extended to analyze the antennas with complicated lumped/active networks in this paper. The improved FDTD method is based on a novel integral transform and the matrix theory. Combing the novel integral transform with Kirchhoff's circuit laws, the hybrid networks comprised of high order linear and nonlinear elements with arbitrary connection can be modeled by a stable matrix equation. An effective model is built for the linear lumped networks including the internal independent sources. A wire antenna loaded with wideband match network and a two-element active patch antenna loaded with Gunn diodes are analyzed by the developed techniques. The analysis results indicate that the improved matrix-type FDTD method is not only stable and accurate, but also time-saving in simulating the complicated hybrid networks.
Citation
Shao-Qiu Xiao, Zhenghai Shao, and Bing-Zhong Wang, "Application of the Improved Matrix Type FDTD Method for Active Antenna Analysis," Progress In Electromagnetics Research, Vol. 100, 245-263, 2010.
doi:10.2528/PIER09112204
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-di®erence Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

2. Jin , J., The Finite Element Method in Electromagnetics, 2nd Ed., CRC Press, Boca Raton, FL, 2002.

3. Mittra, R., K. Du, and , "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

4. Xiao, S. Q., Z. H. Shao, M. Fujise, and B.-Z. Wang, "Pattern reconfigurable leaky-wave antenna design by FDTD method and Floquet's theorem ," IEEE Trans. Antennas Propag., Vol. 53, 1845-1848, May 2005.
doi:10.1109/TAP.2005.846816

5. Wang, M. Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials ," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602

6. Sabri, M. M., J. Rashed-Mohassel, and N. Masoumi, "Application of FDTD-based macromodeling for signal integrity analysis in practical PCBs," Progress In Electromagnetics Research Letters, Vol. 5, 45-55, 2008.
doi:10.2528/PIERL08103103

7. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by FDTD method and comparing with capacitance and homogenization methods ," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERL08021802

8. Yegin, K. and A. Q. Martin, "On the design of broad-band loaded wire antennas using the simplified real frequency technique and a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 51, 220-228, Feb. 2003.
doi:10.1109/TAP.2003.809056

9. Sui, W., D. A. Christensen, and C. H. Durney, "Extending the two-dimensional FDTD method to hybrid electromagnetic system with active and passive lumped elements," IEEE Trans. Microwave Theory Tech., Vol. 40, 724-730, Apr. 1992.
doi:10.1109/22.127522

10. Pereda, J. A., F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "A new algorithm for the incorporation of arbitrary linear lumped networks into FDTD simulators," IEEE Trans. Microwave Theory Tech., Vol. 47, 943-949, Jun. 1999.
doi:10.1109/22.769330

11. Wu, T.-L., S.-T. Chen, and Y.-S. Huang, "A novel approach for the incorporation of arbitrary linear lumped network into FDTD method ," IEEE Microwave and Wireless Components Letters, Vol. 14, 74-76, 2004.
doi:10.1109/LMWC.2003.822567

12. Kuo, C.-N., B. Houshmand, and T. Itoh, "Full-wave analysis of package microwave circuits with active and nonlinear devices: An FDTD approach," IEEE Trans. Microwave Theory Tech., Vol. 45, 819-826, May 1997.
doi:10.1109/22.575606

13. Shao, Z. H. and M. Fujise, "An improved FDTD formulation for general linear lumped microwave circuits based on matrix theory," IEEE Microw. Theory Tech., Vol. 53, 2261-2266, July 2005.
doi:10.1109/TMTT.2005.850450

14. Su, D. Y., D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-382, 2008.
doi:10.2528/PIER07120902

15. Koh, B. P., I. J. Graddock, P. Urwin-Wright, and C. J. Railton, "FDTD analysis of varactor-tuned patch antenna including device packaging effects ," IEE Electronics Letters, Vol. 37, 1494-1495, Dec. 2001.
doi:10.1049/el:20011026

16. Sui, W., "Time-domain Computer Analysis of the Nonlinear Hybrid Systems ," CRC Press, New York, 2002.

17. Li, J., L. Guo, and H. Zeng, "FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition," Progress In Electromagnetics Research, Vol. 88, 197-211, 2008.
doi:10.2528/PIER08110102

18. Nogi, S., J. Lin, and T. Itoh, "Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators ," IEEE Trans. Microwave Theory Tech., Vol. 41, 819-826, Oct. 199.

19. Thomas, V. A., K.-M. Ling, M. E. Jones, B. Toland, J. Lin, and T. Itoh, "FDTD analysis of an active antenna," IEEE Microwave and Guided Wave Letters, Vol. 4, 296-298, Sep. 1993.
doi:10.1109/75.311512

20. Emili, G., F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "Rigorous modeling of packaged Schottky diodes by the nonlinear lumped network (NL2N)-FDTD approach ," IEEE Trans. Microwave Theory Tech., Vol. 48, 2277-2282, Jan. 2000.
doi:10.1109/22.898975

21. Ei Mrabet, O. and M. Essaaidi, "An e±cient algorithm for the global modeling of RF and microwave circuits using a reduced nonlinear lumped network (RNL2N)-FDTD approach," IEEE Microwave and Wireless Components Letters, Vol. 14, 86-88, Feb. 2004.
doi:10.1109/LMWC.2003.820640

22. Vahabi Sani, N., A. Mohammadi, A. Abdipour, and F. M. Ghannouchi, "Analysis of multiport receivers using FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 635-643, 2008.

23. Liu, H. and H. W. Yang, "FDTD analysis of magnetized ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2399-2406, 2008.
doi:10.1163/156939308787543787