1. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 40, 634-641, Jun. 1992.
doi:10.1109/8.144597 Google Scholar
2. Song, J. M., C. C. Lu, and W. C. Chew, "MLFMA for electromagnetic scattering from large complex objects," IEEE Trans. Antennas Propag., Vol. 45, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
3. Harrington, R. F., Field Computation by Moment Methods, MacMillan, 1968.
4. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, , IEEE Press, 1998.
5. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
6. Peng, Z. Q. and A. G. Tijhuis, "Transient scattering by a lossy dielectric cylinder: Marching-on-in-frequency approach," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 5, 1993.
doi:10.1163/156939393X00840 Google Scholar
7. Tijhuis, A. G., M. C. Beurden, and A. P. M. Van Zwamborn, "Iterative solution of field problems with a varying physical parameter," Elektrik, Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 10, No. 2, 2002. Google Scholar
8. Yeo, J., V. V. S. Prakash, and R. Mittra, "Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM)," Microwave and Optical Technology Letters, Vol. 39, No. 6, 456-464, 2003.
doi:10.1002/mop.11247 Google Scholar
9. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206 Google Scholar
10. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453 Google Scholar
11. Matekovitz, L., V. A. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propag., Vol. 55, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073 Google Scholar
12. Yuan, H.-W., S.-X. Gong, Y. Guan, and D.-Y. Su, "Scattering analysis of the large array antennas using the synthetic basis functions method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 309-320, 2009.
doi:10.1163/156939309787604364 Google Scholar
13. Yla-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, 105-125, Feb. 2009.
doi:10.1080/17455030802585365 Google Scholar
14. Xiao, G., J.-F. Mao, and B. Yuan, "A generalized surface integral equation formulation for analysis of complex electromagnetic systems," IEEE Trans. Antennas Propag., Vol. 57, 701-710, Mar. 2009.
doi:10.1109/TAP.2009.2013425 Google Scholar
15. Laviada, J., F. Las-Heras, M. R. Pino, and R. Mittra, "Solution of electrically large problems with multilevel characteristic basis functions," IEEE Trans. Antennas Propag., Vol. 57, 3189-3198, Oct. 2009. Google Scholar
16. Golub, G. H. and C. F. V. Loan, Matrix Computations, Johns Hopkins University Press, 1996.
17. Van De Water, A. M., B. P. De Hon, M. C. Van Beurden, A. G. Tijhuis, and P. De Maagt, "Linear embedding via Green's operators: A modeling technique for finite electromagnetic band-gap structures," Phys. Rev. E, Vol., Vol. 72, 1-11, Nov. 2005. Google Scholar
18. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green's operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009. Google Scholar
19. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "On the convergence of the eigencurrent expansion method applied to linear embedding via Green's operators,", submitted Oct. 2009. Google Scholar
20. Bekers, D. J., S. J. L. Van Eijndhoven, and A. G. Tijhuis, "An eigencurrent approach for the analysis of finite antenna arrays," IEEE Trans. Antennas Propag., Vol. 58, Dec. 2009. Google Scholar
21. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "A total inverse scattering operator formulation for the analysis of large 3-D structures," 11th ICEAA, Torino, Italy, Sept. 2009. Google Scholar
22. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "Analysis of antennas in the presence of large composite 3-D structures with linear embedding via Green's operators (LEGO) and a modified EFIE," 4th EuCAP, Barcelona, Spain, to be presented, Apr. 2010. Google Scholar
23. Lindell, I., "Huygens' principle in electromagnetics," Science, Measurement and Technology, IEE Proceedings, Vol. 143, 103-105, Mar. 1996.
doi:10.1049/ip-smt:19960218 Google Scholar
24. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
25. Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, SIAM, 1999.
26. Gurel, L., O. Ergul, and A. Unal, "Accurate analysis of metamaterials involving finite arrays of split-ring resonators and thin wires," PIERS Proceedings, 470-473, Beijing, China. Google Scholar
27. Ergul, O., T. Malas, C. Yavuz, A. Unal, and L. Gurel, "Computational analysis of complicated metamaterial structures using MLFMA and nested preconditioners," 2nd EuCAP, Edinburg, UK, Nov. 2007. Google Scholar