Vol. 101
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-09
Effect of High-Order Modes on Tunneling Characteristics
By
Progress In Electromagnetics Research, Vol. 101, 291-306, 2010
Abstract
Most tunneling effects are investigated using a one-dimensional model, but such an approach fails to explain the phenomena of the propagation of wave in a system with geometric discontinuities. This work studies the tunneling characteristics in a waveguide system that consists of a middle section with a distinct cutoff frequency, which is controlled by the cross-sectional geometry. Unlike in the one-dimensional case, in which only the fundamental mode is considered, in a virtually three-dimensional system, multiple modes have to be taken into consideration. High-order modes (HOMs) modify the amplitude and the phase of the fundamental mode (TE10), thus subsequently affecting the transmission and group delay of a wave. The effect of the high-order evanescent modes is calculated, and the results are compared with the simulated ones using a full-wave solver. Both oversized and undersized waveguides reveal the necessity of considering the HOMs. The underlying physics is manifested using a multiple-reflection model. This study indicates that the high-order evanescent modes are essential to the explanation of the phenomena in a tunneling system with geometrical discontinuities.
Citation
Hsin-Yu Yao Tsun-Hun Chang , "Effect of High-Order Modes on Tunneling Characteristics," Progress In Electromagnetics Research, Vol. 101, 291-306, 2010.
doi:10.2528/PIER09121603
http://www.jpier.org/PIER/pier.php?paper=09121603
References

1. Landauer, R. and T. Martin, "Barrier interaction time in tunneling," Rev. Mod. Phys., Vol. 66, No. 1, 217-228, 1994.
doi:10.1103/RevModPhys.66.217

2. Hauge, E. H. and J. A. Stovneng, "Tunneling time: A critical review," Rev. Mod. Phys., Vol. 61, No. 4, 917-936, 1989.
doi:10.1103/RevModPhys.61.917

3. Solli, D., R. Y. Chiao, and J. M. Hickmann, "Superluminal effects and negative group delays in electronics, and their applications," Phys. Rev. E, Vol. 66, 056601, 2002.
doi:10.1103/PhysRevE.66.056601

4. Jackson, A. D., A. Lande, and B. Lautrup, "Apparent superluminal behavior in wave propagation," Phys. Rev. A, Vol. 64, 044101, 2001.
doi:10.1103/PhysRevA.64.044101

5. Winful, H. G., "Nature of superluminal barrier tunneling," Phys. Rev. Lett., Vol. 90, 023901, 2003.
doi:10.1103/PhysRevLett.90.023901

6. Hartman, T. E., "Tunneling of a wave packet," J. Appl. Phys., Vol. 33, No. 12, 3427-3433, 1962.
doi:10.1063/1.1702424

7. Winful, H. G., "Delay time and the hartman effect in quantum tunneling," Phys. Rev. Lett., Vol. 91, 260401, 2003.
doi:10.1103/PhysRevLett.91.260401

8. Stenner, M. D., D. J. Gauthier, and M. A. Neifeld, "Fast causal information transmission in a medium with a slow group velocity," Phys. Rev. Lett., Vol. 94, 053902, 2005.
doi:10.1103/PhysRevLett.94.053902

9. Wang, L. J., A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature, Vol. 406, 277-279, 2000.
doi:10.1038/35018520

10. Cui, C. L., J. K. Jia, J. W. Gao, Y. Xue, G. Wang, and J. H. Wu, "Ultraslow and superluminal light propagation in a four-level atomic system," Phys. Rev. A, Vol. 76, 033815, 2007.
doi:10.1103/PhysRevA.76.033815

11. Halvorsen, T. G. and J. M. Leinaas, "Superluminal group velocity in a birefringent crystal," Phys. Rev. A, Vol. 77, 023808, 2008.
doi:10.1103/PhysRevA.77.023808

12. Steinberg, A. M., P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett., Vol. 71, No. 5, 708-711, 1993.
doi:10.1103/PhysRevLett.71.708

13. Von Freymann, G., S. John, S. Wong, V. Kitaev, and G. A. Ozin, "Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region," Appl. Phys. Lett., Vol. 86, 053108, 2005.
doi:10.1063/1.1857076

14. Vetter, R. M., A. Haibel, and G. Nimtz, "Negative phase time for scattering at quantum wells: A microwave analogy experiment," Phys. Rev. E, Vol. 63, 046701, 2001.
doi:10.1103/PhysRevE.63.046701

15. Brodowsky, H. M., W. Heitmann, and G. Nimtz, "Comparison of experimental microwave tunneling data with calculations based on Maxwell's equations," Phys. Lett. A, Vol. 222, 125-129, 1996.
doi:10.1016/0375-9601(96)00646-9

16. Winful, H. G., "Group delay, stored energy, and the tunneling of evanescent electromagnetic waves," Phys. Rev. E, Vol. 68, 016615, 2003.
doi:10.1103/PhysRevE.68.016615

17. Wang, Z. Y. and C. D. Xiong, "Theoretical evidence for the superluminality of evanescent modes," Phys. Rev. A, Vol. 75, 042105, 2007.
doi:10.1103/PhysRevA.75.042105

18. Chen, X. and C. Xiong, "Electromagnetic simulation of the evanescent mode," Ann. Phys. (Leipzig), Vol. 7, 631, 1998.

19. Pablo, A., L. Barbero, H. E. Hernandez-Figueroa, and E. Recami, "Propagation speed of evanescent modes," Phys. Rev. E, Vol. 62, No. 6, 8628-8635, 2000.
doi:10.1103/PhysRevE.62.8628

20. Enders, A. and G. Nimtz, "Photonic-tunneling experiments," Phys. Rev. B, Vol. 47, No. 15, 9605-9609, 1993.
doi:10.1103/PhysRevB.47.9605

21. Enders, A. and G. Nimtz, "Evanescent-mode propagation and quantum tunneling," Phys. Rev. E, Vol. 48, No. 1, 632-634, 1993.
doi:10.1103/PhysRevE.48.632

22. Winful, H. G., "The meaning of group delay in barrier tunnelling: A re-examination of superluminal group velocities," New J. Phys., Vol. 8, 101, 2006.
doi:10.1088/1367-2630/8/6/101

23. Fleming, J. G., S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature, Vol. 417, 52-55, 2002.
doi:10.1038/417052a

24. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nature Photonic, Vol. 1, 319-330, 2007.
doi:10.1038/nphoton.2007.89

25. Pozar, D. M., Microwave Engineering, Chap. 5, Addison-Welsey, New York, 1990.

26. Gesell, G. A. and I. R. Ciric, "Recurrence modal analysis for multiple waveguide discontinuities and its application to circular structures," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 3, 484-490, 1993.
doi:10.1109/22.223749

27. Rozzi, T. E. and W. F. G. Mecklenbrauker, "Wide-band network modeling of interacting inductive irises and steps," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 2, 235-240, 1975.
doi:10.1109/TMTT.1975.1128532

28. Davies, P. C. W., "Quantum tunneling time," Am. J. Phys., Vol. 73, No. 1, 23-27, 2004.
doi:10.1119/1.1810153