Vol. 102
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-26
A TDIE/TDPO Hybrid Method for the Analysis of TM Transient Scattering from Two-Dimensional Combinative Conducting Cylinders
By
Progress In Electromagnetics Research, Vol. 102, 181-195, 2010
Abstract
In this work, a hybrid method which combines time domain integral equation method (TDIE) with time domain physical optics method (TDPO) is presented for the problem of TM transient scattering from two-dimensional (2-D) combinative conducting targets. The explicit solution of Marching-On-in-Time (MOT) is developed. The high accuracy and efficiency of this hybrid method are demonstrated by comparing the numerical results of this hybrid method with those obtained by TDIE. To obtain 2-D transient far scattered field, a concise algorithm about time-domain near-zone to far-zone transformation without double Fourier transform is presented for TDIE and hybrid method, and its numerical results are verified by comparing with results obtained from inverse discrete Fourier transform (IDFT) techniques.
Citation
San-Tuan Qin, Shu-Xi Gong, Rui Wang, and Li-Xin Guo, "A TDIE/TDPO Hybrid Method for the Analysis of TM Transient Scattering from Two-Dimensional Combinative Conducting Cylinders," Progress In Electromagnetics Research, Vol. 102, 181-195, 2010.
doi:10.2528/PIER09122405
References

1. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "An integral equation modeling of electromagnetic scattering from the surfaces of a rbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404        Google Scholar

2. Zhuang, W., Z. Fan, D.-Z. Ding, and Y. An, "Fast analysis and design of frequency selective surface using the gmresr-FFT method ," Progress In Electromagnetics Research B, Vol. 12, 63-80, 2009.
doi:10.2528/PIERB08120406        Google Scholar

3. Fan, Z., D.-Z. Ding, and R.-S. Chen, "The efficient analysis of electromagnetic scattering from composite structures using hybrid CFIE-IEFIE," Progress In Electromagnetics Research B, Vol. 10, 131-143, 2008.
doi:10.2528/PIERB08091606        Google Scholar

4. Danesfahani, R., S. Hatamzadeh-Varmazyar, E. Babolian, and Z. Masouri, "Applying shannon wavelet basis functions to the method of moments for evaluating the radar cross section of the conducting and resistive surfaces ," Progress In Electromagnetics Research B, Vol. 8, 257-292, 2008.
doi:10.2528/PIERB08062601        Google Scholar

5. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206        Google Scholar

6. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.
doi:10.2528/PIERB08010602        Google Scholar

7. Yuan, J., Y. Qiu, and Q. Z. Liu, "Fast analysis of multiple antennae coupling on very electrical large objects via parallel technique ," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1232-1241, 2008.
doi:10.1163/156939308784158887        Google Scholar

8. Engheta, N., W. D. Murphy, V. Rokhlin, et al. "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 6, 634-641, Jun. 1992.
doi:10.1109/8.144597        Google Scholar

9. Yuan, H. B., N. Wang, and C. H. Liang, "Fast algorithm to extract the singularity of higher order moment method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1250-1257, 2008.
doi:10.1163/156939308784158904        Google Scholar

10. Chen, Y., S. Yang, S. He, and Z.-P. Nie, "Design and analysis of wideband planar monopole antennas using the multilevel fast multipole algorithm," Progress In Electromagnetics Research B, Vol. 15, 95-112, 2009.
doi:10.2528/PIERB09042002        Google Scholar

11. Su, D. Y., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of Pifas," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603        Google Scholar

12. Essid, C., M. B. B. Salah, K. Kochlef, A. Samet, and A. B. Kouki, "Spatial-spectral formulation of method of moment for rigorous analysis of microstrip structures ," Progress In Electromagnetics Research Letters, Vol. 6, 17-26, 2009.
doi:10.2528/PIERL08112706        Google Scholar

13. Balaban, M. V., R. Sauleau, T. M. Benson, and A. I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk ," Progress In Electromagnetics Research B, Vol. 16, 107-126, 2009.
doi:10.2528/PIERB09050701        Google Scholar

14. Huang, Y., Q. Z. Liu, Y. Zou, and L. Sun, "A hybrid FE-BI method for electromagnetic scattering from dielectric bodies partially covered by conductors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 423-430, 2008.        Google Scholar

15. Bayer, S. E. and A. A. A. Ergin, "A stable Marching-On-in-Time scheme for wire scatterers using a Newmark-Beta formulation," Progress In Electromagnetics Research B, Vol. 6, 337-360, 2008.
doi:10.2528/PIERB08031215        Google Scholar

16. Rynne, B. P., "Time domain scattering from arbitrary surfaces using the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 1, 93-112, Jan. 1991.        Google Scholar

17. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 1, Jan. 1991.
doi:10.1109/8.64435        Google Scholar

18. Dadvies, P. J., "Stability of time-marching numerical schemes for the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 1, 85-114, Jan. 1994.
doi:10.1163/156939394X00821        Google Scholar

19. Rynne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 12, 1181-1205, Dec. 1990.
doi:10.1163/156939390X00762        Google Scholar

20. Ergin, A. A., B. Shanker, and E. Michielssen, "The plane wave time-domain algorithm for the fast analysis of transient wave phenomena," IEEE Antennas Propagat. Mag., Vol. 41, No. 4, 39-52, Sep. 1999.
doi:10.1109/74.789736        Google Scholar

21. Shanker, B., A. A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time domain algorithm," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 4, 510-523, 2000.
doi:10.1109/8.843664        Google Scholar

22. Shanker, B., A. A. Ergin, K. Aygun, and M. Y. Lu, "Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm ," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, Mar. 2003.
doi:10.1109/TAP.2003.809054        Google Scholar

23. Walker, S. P. and M. J. Vartiainen, "Hybridization of curvilinear time-domain integral equation and time-domain optical methods for electromagnetic scattering analysis ," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 318-324, 1998.
doi:10.1109/8.662650        Google Scholar

24. Ren, M., et al. "Coupled TDIE-PO method for transient scattering from electrically large conducting objects," Electronics Letters, Vol. 44, No. 4, 258-260, 2008.
doi:10.1049/el:20083532        Google Scholar

25. Qin, Y., D. Zhou, J. He, P. Liu, and , "A UTD enhanced PO-TDIE hybrid algorithm," Progress In Electromagnetics Research M, Vol. 8, 153-162, 2009.
doi:10.2528/PIERM09062310        Google Scholar

26. Damaskos, N. J., et al. "Transient scattering by resistive cylinders," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 1, 21-25, 1985.
doi:10.1109/TAP.1985.1143464        Google Scholar

27. Vechinski, D. A. and S. M. Rao, "Transient scattering by conducting cylinders-TE case," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 9, 1103-1107, Sep. 1992.
doi:10.1109/8.166538        Google Scholar

28. Vechinski, D. A. and S. M. Rao, "Transient scattering from two-dimensional dielectric cylinders and arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 9, 1054-1060, Sep. 1992.
doi:10.1109/8.166530        Google Scholar

29. Rao, S. M., , Time Domain Electromagnetic.

30. Luebbers, R. J., D. Ryan, and J. Beggs, "A two-dimensional time-domain near-zone to far-zone transformation," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 7, 848-851, Jul. 1997.
doi:10.1109/8.155753        Google Scholar

31. Chew, W. C., Waves and Fields in Inhomogeneous Media.

32. Carin, L. and L. B. Felsen, Electromagnetics 2: Ultra-wideband Short-pulse, 273-284, Plenum Press, New York, 1995.