1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters Theory, Design, and Microwave Applications, Wiley, 2008.
3. Caloz, C. and T. Itoh, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications, IEEE Press, Wiley, 2005.
4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
5. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design, theory and experiments," IEEE Trans. Antennas and Propagation, Vol. 51, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562 Google Scholar
6. Silveirinha, M., P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett., Vol. 33, 1726-1728, 2008.
doi:10.1109/MMW.2004.1337766 Google Scholar
7. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
doi:10.1163/156939306779322585 Google Scholar
8. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1109/TMTT.2005.845188 Google Scholar
9. Engheta, N. and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1163/156939309789932421 Google Scholar
10. Oraizi, H. and A. Abdolali, "Some aspects of radio wave propagation in double zero metamaterials having the real parts of epsilon and mu equal to zero," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1957-1968, 2009.
doi:10.1163/156939309788355289 Google Scholar
11. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial fordirective emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.2528/PIER01082101 Google Scholar
12. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002. Google Scholar
13. Oraizi, H. and A. Abdolali, "Analytical determination of zero reflection conditions for oblique incidence on multilayer planar structures," Proc. IEEE MMS Mediterranean. Microwave Symposium, 196-199, Damascus, Syria, 2008.
doi:10.1049/iet-map.2008.0281 Google Scholar
14. Oraizi, H. and A. Abdolali, "Mathematical formulation for zero reflection from multilayer metamaterial structures an their notable applications," IET Microwaves, Antennas and Propagation Journal, Vol. 3, No. 6, 987-996, 2009. Google Scholar
15. Kong, J. A., Theory of Electromagnetic Waves, EMW Pub., 2005.
16. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Nglewood Cliffs, Prentice Hall, 1991.
doi:10.1002/mop.20005
17. Cory, H. and C. Zach, "Wave propagation in metamaterial multilayered structures," Microwave and Optical Technology Letters, Vol. 40, No. 6, 460-465, 2004.
doi:10.1103/PhysRevE.64.056625 Google Scholar
18. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, No. 5, 056625, 2001.
doi:10.2528/PIER07090305 Google Scholar
19. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylinderical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.1364/OE.17.008513 Google Scholar
20. Sounas, D. L. and N. V. Kantartzis, "Systematic surface waves analysis at the interfaces of composite DNG/SNG media," Opt. Express, Vol. 17, No. 10, 8513-8524, 2009.
doi:10.1109/TAP.2003.817553 Google Scholar
21. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a Mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2558-2571, 2003. Google Scholar
22. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, 1996.
doi:10.1006/jcph.1994.1159
23. Berenger, J. P., "A perfectly matched layer for the absorption of electromagneticwaves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1109/8.564092 Google Scholar
24. Ziolokowski, R. W., "The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials," IEEE Trans. Antennas and Propagation, Vol. 45, No. 4, 656-671, 1997.
doi:10.1109/22.238519 Google Scholar
25. Michielssen, E., J. M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 67, 1024-1031, 1993.
doi:10.2528/PIERB07120803 Google Scholar
26. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetic Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIER06120801 Google Scholar
27. Xu, Z., W. Lin, and L. Kong, "Controllable absorbing of metamaterial at microwave," Progress In Electromagnetics Research, Vol. 69, 117-125, 2007.
doi:10.1109/8.899676 Google Scholar
28. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. Antennas and Propagation, Vol. 48, No. 10, 1594-1606, 2000.
doi:10.2528/PIERC08021906 Google Scholar
29. Oraizi, H. and A. Abdolali, "Design and optimization of planar multilayer antireflection metamaterial coatings at Ku band under circularly polarized oblique plane wave incidence," Progress In Electromagnetics Research C, Vol. 3, 1-18, 2008.
doi:10.1103/PhysRevLett.69.2772 Google Scholar
30. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion," Phys. Rev. Lett., Vol. 69, No. 3, 2772-2775, 1992.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
31. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructure," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1163/156939307783134452 Google Scholar
32. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.1088/0953-8984/10/22/007 Google Scholar
33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.2528/PIER09031306 Google Scholar
34. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009. Google Scholar
35. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, 1999.
doi:10.1109/MAP.2006.1645560
36. Oraizi, H., "Application of the method of least squaresto electromagnetic engineering problems," IEEE Antenna and Propagation Magazine, Vol. 48, No. 1, 50-75, 2006. Google Scholar