Vol. 103
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-19
Hybrid FD-FD Analysis of Crossing Waveguides by Exploiting Both the Plus and the Cross Structural Symmetry
By
Progress In Electromagnetics Research, Vol. 103, 217-240, 2010
Abstract
We propose a hybrid finite-difference frequency-domain method to study the perpendicular crossing waveguide, dielectric and microwave, TE and TM modes, by exploiting built-in structural symmetries in these waveguide devices. In the plus (+) symmetry model, the complete solution is obtained by solving two rectangular-shaped quarter structures each with two transparent boundaries and two symmetry boundaries. For the cross (x) symmetry model, solutions of four triangular-shaped quarter structures are needed but each with only one transparent boundary. Numerical results are verified by comparison between these two models and with the power conservation test. We show the total and the fundamental-mode, coupling coefficients of the reflected, cross and through power in the crossing waveguide as functions of the normalized frequency.
Citation
Hung-Wen Chang Yan-Huei Wu Wei-Chi Cheng , "Hybrid FD-FD Analysis of Crossing Waveguides by Exploiting Both the Plus and the Cross Structural Symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202
http://www.jpier.org/PIER/pier.php?paper=10030202
References

1. Gaburro, Z., Silicon Photonics, Vol. 94, 121-176, Ch. 4, Optical Interconnect, Topics in Appl. Phys., 2004.

2. Pavesi, L. and G. Guillot, "Optical Interconnect," Springer-Verlag, Berlin, Heidelberg, 2006.

3. Beausoleil, R. G., P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, "Nanoelectronic and nanophotonic interconnect ," Proc. IEEE, Vol. 96, 230-247, 2008.
doi:10.1109/JPROC.2007.911057

4. Daly, M. G., P. E. Jessop, and D. Yevick, "Crosstalk reduction in intersecting rib waveguide," Journal of Lightwave Technology, Vol. 14, 1695-1698, 1996.
doi:10.1109/50.507946

5. Johnson, S. G., et al., "Elimination of cross talk in waveguide intersections," Optics Letters, Vol. 23, 1855-1857, 1998.
doi:10.1364/OL.23.001855

6. Manolatou, C., et al., "High-density integrated optics," Journal of Lightwave Technology, Vol. 17, 1682-1692, 1999.
doi:10.1109/50.788575

7. Fukazawa, T., T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys., Vol. 43, 646-647, 2004.
doi:10.1143/JJAP.43.646

8. Liu, H., H. Tam, P. K. A. Wai, and E. Pun, "Low-loss waveguide crossing using a multimode interference structure," Optics Communications, Vol. 241, 99-104, 2004.
doi:10.1016/j.optcom.2004.07.008

9. Jamid, H. A., M. Z. M. Khan, and M. Ameeruddin, "A compact 90o three-branch beam splitter based on resonant coupling," Journal of Lightwave Technology, Vol. 23, 3900-3906, 2005.
doi:10.1109/JLT.2005.855859

10. Chen, H. and A. W. Poon, "Low loss multimode interference based crossings for silicon wire waveguides," IEEE Photonics Tech. Letters, Vol. 18, No. 21, 2260-2262, 2006.
doi:10.1109/LPT.2006.884726

11. Bogaerts, W., P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides ," Optics Letters, Vol. 32, 2801-2803, 2007.
doi:10.1364/OL.32.002801

12. Sanchis, P., J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, "Low-crosstalk in silicon-on insulator waveguide crossings with optimized-angle," IEEE Photon. Technol. Lett., Vol. 19, 1583-1585, 2007.
doi:10.1109/LPT.2007.904330

13. Menzel, W. and I. Wolff, "A method for calculating the frequency-dependent properties of microstrip discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, 107-112, 1977.
doi:10.1109/TMTT.1977.1129049

14. Li, J., D. A. Fattal, and R. G. Beausoleil, "Crosstalk-free design for the intersection of two dielectric waveguides," Optics Express , Vol. 17, 7717-7724, 2009.
doi:10.1364/OE.17.007717

15. Neyer, A., W. Nevenkamp, L. Thylen, and B. Lagerstrom, "A beam propagation method analysis of active and passive waveguide crossings," Journal of Lightwave Technology, Vol. 3, 635-642, 1985.
doi:10.1109/JLT.1985.1074239

16. Hammer, M., "Hybrid analytical/numerical coupled-mode modeling of guided-wave devices," Journal of Lightwave Technology, Vol. 25, 2287-2298, 2007.
doi:10.1109/JLT.2007.901438

17. Chang, H. W., Y. H. Wu, S. M. Lu, and W. C. Cheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Numerical investigation ," Progress In Electromagnetics Research, Vol. 97, 159-176, 2009.
doi:10.2528/PIER09091402

18. Chang, H.-W. and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation | Mathematical and numerical formulations," Progress In Electromagnetics Research, Vol. 78, 329-347, 2008.
doi:10.2528/PIER07091002

19. Borges, B.-H. V. and P. R. Herczfeld, "Coupled-mode analysis of highly asymmetric directional couples with periodic perturbation," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 3, 215-226, 1998.
doi:10.1109/22.661706

20. Hammer, M., "Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics," Optics Communications, Vol. 235, 285-303, 2004.
doi:10.1016/j.optcom.2004.02.064

21. Mittra, R. and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave and Guided Wave Letter, Vol. 5, No. 3, 84-86, 1995.
doi:10.1109/75.366461

22. Moerloose, J. D. and M. A. Stuchly, "Behavior of Berenger's ABC for evanescent waves," IEEE Microwave and Guided Wave Letter, Vol. 5, No. 10, 344-346, 1995.
doi:10.1109/75.465042

23. Cheng, W.-C. and H.-W. Chang, "Comparison of PML with layer-mode based TBC for FD-FD method in a layered medium," International Conference on Optics and Photonics in Taiwan, 1-170, Dec. 2008.

24. Chang, H. W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606

25. Chang, H. W., "FD-FD analysis of dielectric waveguide crossings with two-fold symmetry ," he XVIIIth International Workshop on Optical Waveguide Theory and Numerical Modeling, Session 4, 21, 2009.

26. Cheng, W.-C., Finite-different frequency-domain analysis of a dielectric waveguide crossing, Ph.D. Thesis, Department of Photonics, National Sun Yat-sen University, 2010.

27. Chang, H.-W. and S.-M. Wang, "Large-scale hybrid FD-FD method for micro-ring cavities," FWE6 Frontier in Optics,, 2005.