1. Van Vlaenderen, K. J., "A charged space as the origin of sources, fields and potentials,", http://xxx.lanl.gov/, arXiv:physics/9910022 v1, October 16, 1999. Google Scholar
2. Kadlecova, E., "Automated system of calculation of reflecting surface of light sources,", Ph.D. thesis VUT in Brno, FEKT, Brno, September 2004.
doi:10.1007/BF02069589 Google Scholar
3. Kraus, J. D., Radio Astronomy, McGraw-Hill, New York, 1967.
4. Polivka, J., "Microwave noise radiators," International Journal of Infrared and Millimeter Waves, Vol. 17, No. 10, 1779-1788, October 1996. Google Scholar
5. Polivka, J., "Spatial combination of multiple microwave noise radiators," High Frequency Electronics, 46-53, April 2008.
doi:10.2528/PIER10091302 Google Scholar
6. Habel, J., et al., Lighting Technic and Illumination, 448 pages, FCC Public, Prague, 1995.
doi:10.2528/PIER10092807
7. Costa-Quintana, J. and F. Lopez-Aguilar, "Propagation of electromagnetic waves in material media with magnetic monopoles," Progress In Electromagnetics Research, Vol. 110, 267-295, 2010.
doi:10.2528/PIER10052602 Google Scholar
8. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of 2-D homogeneous helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010. Google Scholar
9. Lim, J., J. Lee, J. Lee, S. Han, D. Ahn, and Y. Jeong, "A new calculation method for the characteristic impedance of transmission lines with modified ground structures or perturbation," Progress In Electromagnetics Research, Vol. 106, 147-162, 2010. Google Scholar
10. Hofer, W. A., "A dynamic model of atoms: Structure, internal interactions and photon emissions of hydrogen,", http arXiv:quantph/9801044v2, June 8, 2000.
doi:10.2528/PIER10031011 Google Scholar
11. Popov, E., N. Bonod, and M. Neviere, "Light transmission through a single subwavelength aperture aperture in a lossy screen," PIERS Proceedings, 1451-1455, Beijing, China, March 26-30, 2007.
doi:10.2528/PIER10032106 Google Scholar
12. Cui, J.-P. and W.-Y. Yin, "Transfer function and compact distributed RLC models of carbon nanotube bundle interconnets and their applications," Progress In Electromagnetics Research, Vol. 104, 69-83, 2010.
doi:10.2528/PIER09102801 Google Scholar
13. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Electromagnetic wave propagation in chiral H-guides," Progress In Electromagnetics Research, Vol. 103, 285-303, 2010. Google Scholar
14. Dong, J., "Exotic characteristics of power propagation in the chiral nihility fiber," Progress In Electromagnetics Research, Vol. 99, 163-178, 2009.
doi:10.2528/PIER09030506 Google Scholar
15. Kimble, H. J., "The quantum internet," Nature, Vol. 453, 1023-1042, Insight review, June 19, 2008.
doi:10.1109/JPROC.2008.927355 Google Scholar
16. Lee, H.-S., "A photon modeling method for the characterization of indoor optical wireless communication," Progress In Electromagnetics Research, Vol. 92, 121-136, 2009.
doi:10.1163/156939309788019723 Google Scholar
17. Anantram, B., et al., "Modeling of nanoscale devices," Proceedings of the IEEE, Vol. 96, No. 9, 1511-1550, September 2008. Google Scholar
18. Yu, G. X., T. J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, 583-592, 2009. Google Scholar
19. Dunn, P. F., Measurement and Data Analysis for Engineering and Science, McGraw-Hill, New York, 2005.
20. Wolf, E., Theory of Coherence and Polarization of Light, Sections 3 and 5, Cambridge Univ. Press, New York, 2007.
21. Kapilevich, B. and J. Polivka, "Noise versus coherency in mm-wave material characterization," IR MM-THz Wave Conference, 15-19, CalTech, Pasadena, California, September 2008. Google Scholar
22. Mandel, L. and E. Wolf, "Coherence of thermal radiation," Uspekhi Fizicheskich Nauk, Part 1, t. 87, 492, 1965; Part 2, t. 88, 347, 1966; Part 3, t. 88, 619, 1966 (in Russian).
doi:10.1007/BF02066878 Google Scholar
23. Born, M. and E.Wolf, Principles of Optics, Pergamon Press, 1980.
24. Polivka, J., "Active microwave radiometry," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 3, 483-500, March 1995.
doi:10.1007/BF02274819 Google Scholar
25. Polivka, J., "Overview of microwave sensor technology," High Frequency Electronics, 32-42, April 2007. Google Scholar
26. Polivka, J., "Microwave radiometry and applications," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 9, 1593-1672, September 1995. Google Scholar
27. Zehentner, J., J. Macháč, J. Mrkvica, M. Sarnowski, and J. Polívka, "Field mapping by active radiometry," Proceedings of the 1998 Asia-Pacific Microwave Conference, Vol. 1, 217-220, Yokohama, Japan, December 1998.
doi:10.2529/PIERS060901075836 Google Scholar
28. Polivka, J., "Noise can be good, too," Microwave Journal, Vol. 47, 66-78, March 2004. Google Scholar
29. Kadlecova, E. and P. Fiala, "Numerical modelling of the special light source with novel R-FEM method," PIERS Online, Vol. 2, No. 6, 644-647, 2006. Google Scholar
30. Polivka, J., "Experiments with microwave coherence tomography,", Part 1, High Frequency Electronics, Vol. 5, 36-40, July 2006. Part 2, High Frequency Electronics, Vol. 5, 36-43, August 2006. Google Scholar