Vol. 104
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-30
Properties of Electromagnetic Fields and Effective Permittivity Excited by Drifting Plasma Waves in Semiconductor-Insulator Interface Structure and Equivalent Transmission Line Technique for Multi-Layered Structure
By
Progress In Electromagnetics Research, Vol. 104, 403-425, 2010
Abstract
Strong interests are recently emerging for development of solid-state devices operating in the so-called "terahertz gap" region for possible application in radio astronomy, industry and defense. To fill the THz gap by using conventional electron approach or transit time devices seems to be very difficult due to the limitation that comes from the carrier transit time where extremely small feature sizes are required. One way to overcome this limitation is to employ the traveling wave type approach in semiconductors like classical traveling wave tubes (TWTs) where no transit time limitation is imposed. In this paper, the analysis method to analyze the properties of drifting plasma waves in semiconductor-insulator structure based on the transverse magnetic (TM) mode analysis is presented. Two waves components (quasi-lamellar wave and quasisolenoidal wave), electromagnetic fields (Ey, Ez and Hx) and ω-and k-dependent effective permittivity are derived where these parameters are the main parameters to explain the interaction between propagating electromagnetic waves and drifting carrier plasma waves in semiconductor. A method to determine the surface impedances in semiconductor-insulator multi-layered structure using equivalent transmission line representation method is also presented since multi-layered structure is also a promising structure for fabricating such a so-called plasma wave device.
Citation
Farahiyah Mustafa, and Abdul Manaf Hashim, "Properties of Electromagnetic Fields and Effective Permittivity Excited by Drifting Plasma Waves in Semiconductor-Insulator Interface Structure and Equivalent Transmission Line Technique for Multi-Layered Structure," Progress In Electromagnetics Research, Vol. 104, 403-425, 2010.
doi:10.2528/PIER10041504
References

1. Solymar, L. and E. Ash, "Some travelling-wave interactions in semiconductors theory and design considerations," Int. J. Electronics, Vol. 20, No. 2, 127-148, 1966.
doi:10.1080/00207216608937858

2. Sumi, M., "Travelling-wave amplification by drifting carriers in semiconductors," Appl. Phys. Lett., Vol. 9, No. 6, 251-253, 1966.
doi:10.1063/1.1754735

3. Sumi, M., "Traveling-wave amplification by drifting carriers in semiconductors," Jpn. J. Appl. Phys., Vol. 6, No. 6, 688-698, 1967.
doi:10.1143/JJAP.6.688

4. Zotter, B., Traveling-wave amplification by drifting carriers in Semiconductor, Vol. 2958, 1 US Army ECOM Rept., 1968.

5. Steele, M. C. and B. Vural, Wave Interactions in Solid State Plasmas, Chap. 12, McGraw-Hill, New York, 1969.

6. Ettenberg, M. and J. S. Nadan, "The theory of the interaction of drifting carriers in a semiconductor with external traveling-wave circuits," IEEE Trans. Electron. Devices, Vol. 17, 219-233, 1970.
doi:10.1109/T-ED.1970.16957

7. Sumi, M. and T. Suzuki, "Evidence for directional coupling between semiconductor carriers and slow circuit waves," Appl. Phys. Lett., Vol. 13, No. 9, 326-327, 1968.
doi:10.1063/1.1652634

8. Freeman, J. C., V. L. Newhouse, and R. L. Gunshor, "Interactions between slow circuit waves and drifting carriers in InSb and Ge at 4.2 K," Appl. Phys. Lett., Vol. 22, 641-643, 1973.
doi:10.1063/1.1654538

9. Thompson, J. J., M. R. S. Taylor, A. M. Thompson, S. P. Beaumont, and N. Apsley, "Gallium arsenide solid state travelling wave amplifier at 8 GHz," Electronics Letters, Vol. 27, No. 6, 516-518, 1991.
doi:10.1049/el:19910324

10. Hashim, A. M., T Hashizume, K. Iizuka, and H. Hasegawa, "Plasma wave interactions in the microwave to THz range between carriers in a semiconductor 2deg and interdigital slow waves ," Superlattices Microstruct, Vol. 34, 531-537, 2003.
doi:10.1016/j.spmi.2004.03.054

11. Mustafa, F. and A. M. Hashim, "Generalized 3D transverse magnetic mode method for analysis of interaction between drifting plasma waves in 2deg-structured semiconductors and electromagnetic space harmonic waves," Progress In Electromagnetics Research, Vol. 102, 315-335, 2010.

12. Iizuka, K., A. M. Hashim, and H. Hasegawa, "Surface plasma wave interactions between semiconductor and electromagnetic space harmonics from microwave to THz range," Thin Solid Films, Vol. 464-465, 464-468, 2003.

13. Hashim, A. M., S. Kasai, T. Hashizume, and H. Hasegawa, "Large modulation of conductance in interdigital-gated HEMT devices due to surface plasma wave interactions," Jpn. J. Appl. Phys., Vol. 44, 2729-2734, 2005.
doi:10.1143/JJAP.44.2729

14. Hashim, A. M., S. Kasai, T. Hashizume, and H. Hasegawa, "Integration of interdigital-gated plasma wave device for proximity communication system application," Microelectronics Journal, Vol. 38, 1263-1267, 2007.

15. Hashim, A. M., S. Kasai, K. Iizuka, T. Hashizume, and H. Hasegawa, "Novel structure of GaAs-based interdigital-gated HEMT plasma devices for solid-state THz wave amplifier," Microelectronics Journal, Vol. 38, 1268-1272, 2007.

16. Kino, G. S., "Carrier waves in semiconductors --- Part I: Zero temperature theory," IEEE Trans. Electron. Devices, Vol. 17, 178-192, 1970.
doi:10.1109/T-ED.1970.16952

17. Blotekjaer, K., "Transport equations for electrons in two-valley semiconductors," IEEE Trans. Electron. Devices, Vol. 17, No. 38, 38-47, 1970.
doi:10.1109/T-ED.1970.16921

18. Mizushima, Y. and T. Sado, "Surface wave amplification between parallel semiconductors," IEEE Trans. Electron. Devices, Vol. 17, No. 7, 541-549, 1970.
doi:10.1109/T-ED.1970.17027

19. Steele, M. C. and B. Vural, Wave Interactions in Solid State Plasmas, Chap. 11, McGraw-Hill, New York, 1969.

20. Hashim, A. M., Plasma waves in semiconductors and their interactions with electromagnetic waves up to terahertz region, Ph.D. thesis, Hokkaido University, 2006.