Vol. 105
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-04
Modelling of Reconfigurable Terahertz Integrated Architecture (Retina) SIW Structures
By
Progress In Electromagnetics Research, Vol. 105, 71-92, 2010
Abstract
This paper discusses for the first time the combined optoelectronic-electromagnetic modelling of a new technology that represents a paradigm shift in the way millimetre-wave and terahertz electronics can be implemented using the REconfigurable Terahertz INtegrated Architecture (RETINA) concept. Instead of having traditional metal-pipe rectangular waveguide structures with metal sidewalls, RETINA structures have photo-induced virtual sidewalls within a high resistivity silicon substrate. This new class of substrate integrated waveguide (SIW) technology allows individual components to be made tuneable and subsystems to be reconfigurable, by changing light source patterns. Detailed optoelectronic modelling strategies for the generation of virtual sidewalls and their electromagnetic interactions are presented in detail for the first time. It is found with double-sided illuminated RETINA structures that an insertion loss of 1.3 dB/ λg at 300 GHz is predicted for the dominant TE10 mode and for a cavity resonator a Q-factor of 4 at 173 GHz is predicted for the TE101 mode. While predicted losses are currently greater than other non-tuneable/reconfigurable SIW technologies, there is a wide range of techniques that can improve their performance, while still allowing completely arbitrary topologies to be defined in the x-z plane. For this reason, it is believed that this technology could have a profound impact on the future of millimetre-wave and terahertz electronics. As a result, this paper could be of interest to research groups that have the specialised experimental resources to implement practical demonstrator exemplars.
Citation
Yun Zhou, and Stepan Lucyszyn, "Modelling of Reconfigurable Terahertz Integrated Architecture (Retina) SIW Structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.
doi:10.2528/PIER10041806
References

1. Lucyszyn, S. and I. D. Robertson, "Analog reflection topology building blocks for adaptive microwave signal processing applications," IEEE Trans. Micro. Theory Tech., Vol. 43, No. 3, 601-611, Mar. 1995.
doi:10.1109/22.372106

2. Lucyszyn, S., Advanced RF MEMS, Cambridge University Press, Cambridge, UK, ISBN-13: 9780521897716, Aug. 2010.

3. McGrath, W. R., C. Walker, M. Yap, and Y.-C. Tai, "Silicon micromachined waveguides for millimetre-wave and submillimeterwave frequencies ," IEEE Microw. Guid. Wave Lett., Vol. 3, No. 3, 61-63, 1993.

4. Lucyszyn, S., Q. H. Wang, and I. D. Robertson, "0.1 THz rectangular waveguide on GaAs semi-insulating substrate," IEE Elect. Lett., Vol. 31, No. 9, 721-722, Apr. 1995.
doi:10.1049/el:19950480

5. Lucyszyn, S., D. Budimir, Q. H. Wang, and I. D. Robertson, "Design of compact monolithic dielectric-filled metal-pipe rectangular waveguides for millimetre-wave applications," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 143, No. 5, 451-453, Oct. 1996.
doi:10.1049/ip-map:19960761

6. Lucyszyn, S., "The future of on-chip terahertz metal-pipe rectangular waveguides implemented using micromachining and multilayer technologies," IEE Colloquium Digest on Terahertz Technology and Its Applications, Vol. 1997, No. 151, 10/1-10/10, London, Apr. 1997.

7. Lucyszyn, S., S. R. P. Silva, I. D. Robertson, R. J. Collier, A. K. Jastrzebski, I. G. Thayne, and S. P. Beaumont, "Terahertz multi-chip module (T-MCM) technology for the 21st Century?," IEE Colloquium Digest on Multi-chip Modules and RFICs, 6/1-6/8, London, May 1998.

8. Aftanasar, M. S., P. R. Young, I. D. Robertson, J. Minalgiene, and S. Lucyszyn, "Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides," IEE Elect. Lett., Vol. 37, No. 18, 1122-1123, Aug. 2001.
doi:10.1049/el:20010750

9. Stephens, D., P. R. Young, and I. D. Robertson, "Design and characterization of 180 GHz filters in photoimageable thick-film technology," IEEE MTT-S IMS, Vol. 1, 451-454, 2005.

10. Bowen, J. W., S. Hadjiloucas, B. M. Towlson, L. S. Karatzas, S. T. G. Wootton, N. J. Cronin, S. R. Davies, C. E. McIntosh, J. M. Chamberlain, R. E. Miles, and R. D. Pollard, "Micromachined waveguide antennas for 1.6 THz," IEE Elect. Lett., Vol. 42, No. 15, 842-843, Jul. 2006.
doi:10.1049/el:20061766

11. Lucyszyn, S., "Substrate integrated metal-pipe rectangular waveguides," IEEE International Microwave Symposium (IMS2010) Workshop Proceedings, WSI: Substrate Integrated Circuits, USA, May 2010.

12. Lucyszyn, S. and Y. Zhou, "Reconfigurable terahertz integrated architecture (RETINA)," 33rd International Conference on Infrared, Millimetre, and Terahertz Waves (IRMMW-THz 2008), Pasadena, USA, Sep. 2008.

13. Ambroziak, A., Semiconductor Photoelectric Devices, Iliffe Books, London, 1968.

14. Joshi, N. V., "Photoconductivity: Art, Science and Technology," Marcel Dekker, New York, 1990.

15. Johnson, A. M. and D. H. Auston, "Microwave switching by picosecond photoconductivity," IEEE J. Quant. Electronics, Vol. 11, No. 6, 283-287, Jun. 1975.
doi:10.1109/JQE.1975.1068622

16. Lee, C. H., "Picosecond optoelectronic switching in GaAs," Appl. Phy. Lett., Vol. 30, No. 2, 84-86, Jan. 1977.
doi:10.1063/1.89297

17. Seeds, A. J. and A. A. De Salles, "Optical control of microwave semiconductor devices," IEEE Trans. Micro. Theory Tech., Vol. 38, No. 5, 577-585, May 1990.
doi:10.1109/22.54926

18. Lucyszyn, S. and I. D. Robertson, "Optically-induced measurement anomalies with voltage-tunable analog control MMICs," IEEE Trans. Micro. Theory Tech., Vol. 46, No. 8, 1105-1114, Aug. 1998.
doi:10.1109/22.704953

19. Platte, W., "LED-induced distributed Bragg reflection microwave ¯lter with ¯bre-optically controlled change of center frequency via photoconductivity grating," IEEE Trans. Micro. Theory Tech., Vol. 39, No. 2, 359-363, Feb. 1991.
doi:10.1109/22.102986

20. Platte, W., "An optimization of semiconductor film thickness in light-controlled microstrip devices," Solid-state Electron., Vol. 20, 57-60, 1977.
doi:10.1016/0038-1101(77)90034-X

21. Platte, W., Lichtempfindliche Halbleiterschichten in Microstrip Schaltungen, Dissertation, 78, University Erlangen-Nurnberg, 1975.

22. Flewitt, A. J. and W. I. Milne, "a-Si:H TFT thin film and substrate materials," Thin Film Transistors: Materials and Processes, Amorphous Silicon Thin Film Transistors, Poly-crystalline Silicon Thin Transist , Chapter 2, Y. Kuo (ed.), 32, Kluwer Academic Pub., Feb. 2004.

23. Lee, C. H., P. S. Mak, and A. P. DeFonzo, "Optical control of millilmeter-wave propagation in dielectric waveguides," IEEE J. Quant. Electronics, Vol. 16, No. 3, 277-288, Mar. 1980.
doi:10.1109/JQE.1980.1070468

24. Davenas, J., S. Besbes, and H. Ben Ouada, "NIR spectrophotometry characterization of ITO electronic property changes at the interface with a PPV derivative," Synethetic Metals, No. 138, 295-298, 2003.
doi:10.1016/S0379-6779(02)01296-1

25. Biyikli, N., I. Kimukin, B. Butun, O. Aytur, and E. Ozbay, "ITO-Schttky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Quant. Electronics, Vol. 10, No. 4, 759-765, Aug. 2004.
doi:10.1109/JSTQE.2004.833977

26. Szczyrbowski, J., A. Dietrich, and H. Hoffmann, "Optical and electrical properties of r.f. sputtered indium-tin oxide films," Phys. Stat. Sol. (a), Vol. 78, 243-252, 1983.
doi:10.1002/pssa.2210780129

27. Afsar, M. N. and K. J. Button, "Precise millimetre-wave measurements of complex refractive index, complex dielectric permittivity and loss tangent of GaAs, Si, SiO2, Al2O3, BeO, Macor and Glass," IEEE Trans. Micro. Theory Tech., Vol. 31, No. 2, 217-223, Feb. 1983.
doi:10.1109/TMTT.1983.1131460

28. SILVACO, Atlas user's manual, device simulation software, 2002.

29. Dressel, M. and G. Gruner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press, 2002.

30. Zhou, Y. and S. Lucyszyn, "HFSSTM modelling anomalies with THz metal-pipe rectangular waveguide structures at room temperature," PIERS Online, Vol. 5, No. 3, 201-211, 2009.
doi:10.2529/PIERS080907072308

31. Patrovsky, A., M. Daigle, and K. Wu, "Coupling mechanism in hybrid SIW-CPW forward couplers for millimeter wave substrate integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2594-2602, Nov. 2008.
doi:10.1109/TMTT.2008.2005919

32. Henry, M., C. E. Free, B. S. Izqueirdo, J. Batchelor, and P. Young, "Millimeter wave substrate integrated waveguide antennas: Design and fabrication analysis," IEEE Trans. Adv. Packag., Vol. 32, No. 1, 93-100, Feb. 2009.
doi:10.1109/TADVP.2008.2011284

33. Samanta, K. K., D. Stephens, and I. D. Robertson, "Design and performance of a 60-GHz multi-ship module receiver employing substrate integrated waveguides ," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 961-967, Oct. 2007.

34. Yousef, H., S. Cheng, and H. Kratz, "Substrate integrated waveguides (SIWs) in a flexible printed circuit board for millimeter-wave applications," J. Microelectromech. Syst., Vol. 18, No. 1, 154-162, Feb. 2009.
doi:10.1109/JMEMS.2008.2009799

35. Kirby, P. L., D. Pukala, H. Manohara, I. Mehdi, and J. Papapolymerou, "Characterization of micromachined silicon rectangular waveguide at 400 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 366-368, Jun. 2006.
doi:10.1109/LMWC.2006.875593

36. http://www.falstad.com/embox/.