1. Lucyszyn, S. and I. D. Robertson, "Analog reflection topology building blocks for adaptive microwave signal processing applications," IEEE Trans. Micro. Theory Tech., Vol. 43, No. 3, 601-611, Mar. 1995.
doi:10.1109/22.372106 Google Scholar
2. Lucyszyn, S., Advanced RF MEMS, Cambridge University Press, Cambridge, UK, ISBN-13: 9780521897716, Aug. 2010.
3. McGrath, W. R., C. Walker, M. Yap, and Y.-C. Tai, "Silicon micromachined waveguides for millimetre-wave and submillimeterwave frequencies ," IEEE Microw. Guid. Wave Lett., Vol. 3, No. 3, 61-63, 1993. Google Scholar
4. Lucyszyn, S., Q. H. Wang, and I. D. Robertson, "0.1 THz rectangular waveguide on GaAs semi-insulating substrate," IEE Elect. Lett., Vol. 31, No. 9, 721-722, Apr. 1995.
doi:10.1049/el:19950480 Google Scholar
5. Lucyszyn, S., D. Budimir, Q. H. Wang, and I. D. Robertson, "Design of compact monolithic dielectric-filled metal-pipe rectangular waveguides for millimetre-wave applications," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 143, No. 5, 451-453, Oct. 1996.
doi:10.1049/ip-map:19960761 Google Scholar
6. Lucyszyn, S., "The future of on-chip terahertz metal-pipe rectangular waveguides implemented using micromachining and multilayer technologies," IEE Colloquium Digest on Terahertz Technology and Its Applications, Vol. 1997, No. 151, 10/1-10/10, London, Apr. 1997. Google Scholar
7. Lucyszyn, S., S. R. P. Silva, I. D. Robertson, R. J. Collier, A. K. Jastrzebski, I. G. Thayne, and S. P. Beaumont, "Terahertz multi-chip module (T-MCM) technology for the 21st Century?," IEE Colloquium Digest on Multi-chip Modules and RFICs, 6/1-6/8, London, May 1998. Google Scholar
8. Aftanasar, M. S., P. R. Young, I. D. Robertson, J. Minalgiene, and S. Lucyszyn, "Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides," IEE Elect. Lett., Vol. 37, No. 18, 1122-1123, Aug. 2001.
doi:10.1049/el:20010750 Google Scholar
9. Stephens, D., P. R. Young, and I. D. Robertson, "Design and characterization of 180 GHz filters in photoimageable thick-film technology," IEEE MTT-S IMS, Vol. 1, 451-454, 2005. Google Scholar
10. Bowen, J. W., S. Hadjiloucas, B. M. Towlson, L. S. Karatzas, S. T. G. Wootton, N. J. Cronin, S. R. Davies, C. E. McIntosh, J. M. Chamberlain, R. E. Miles, and R. D. Pollard, "Micromachined waveguide antennas for 1.6 THz," IEE Elect. Lett., Vol. 42, No. 15, 842-843, Jul. 2006.
doi:10.1049/el:20061766 Google Scholar
11. Lucyszyn, S., "Substrate integrated metal-pipe rectangular waveguides," IEEE International Microwave Symposium (IMS2010) Workshop Proceedings, WSI: Substrate Integrated Circuits, USA, May 2010.
12. Lucyszyn, S. and Y. Zhou, "Reconfigurable terahertz integrated architecture (RETINA)," 33rd International Conference on Infrared, Millimetre, and Terahertz Waves (IRMMW-THz 2008), Pasadena, USA, Sep. 2008.
13. Ambroziak, A., Semiconductor Photoelectric Devices, Iliffe Books, London, 1968.
14. Joshi, N. V., "Photoconductivity: Art, Science and Technology," Marcel Dekker, New York, 1990. Google Scholar
15. Johnson, A. M. and D. H. Auston, "Microwave switching by picosecond photoconductivity," IEEE J. Quant. Electronics, Vol. 11, No. 6, 283-287, Jun. 1975.
doi:10.1109/JQE.1975.1068622 Google Scholar
16. Lee, C. H., "Picosecond optoelectronic switching in GaAs," Appl. Phy. Lett., Vol. 30, No. 2, 84-86, Jan. 1977.
doi:10.1063/1.89297 Google Scholar
17. Seeds, A. J. and A. A. De Salles, "Optical control of microwave semiconductor devices," IEEE Trans. Micro. Theory Tech., Vol. 38, No. 5, 577-585, May 1990.
doi:10.1109/22.54926 Google Scholar
18. Lucyszyn, S. and I. D. Robertson, "Optically-induced measurement anomalies with voltage-tunable analog control MMICs," IEEE Trans. Micro. Theory Tech., Vol. 46, No. 8, 1105-1114, Aug. 1998.
doi:10.1109/22.704953 Google Scholar
19. Platte, W., "LED-induced distributed Bragg reflection microwave ¯lter with ¯bre-optically controlled change of center frequency via photoconductivity grating," IEEE Trans. Micro. Theory Tech., Vol. 39, No. 2, 359-363, Feb. 1991.
doi:10.1109/22.102986 Google Scholar
20. Platte, W., "An optimization of semiconductor film thickness in light-controlled microstrip devices," Solid-state Electron., Vol. 20, 57-60, 1977.
doi:10.1016/0038-1101(77)90034-X Google Scholar
21. Platte, W., Lichtempfindliche Halbleiterschichten in Microstrip Schaltungen, Dissertation, 78, University Erlangen-Nurnberg, 1975.
22. Flewitt, A. J. and W. I. Milne, "a-Si:H TFT thin film and substrate materials," Thin Film Transistors: Materials and Processes, Amorphous Silicon Thin Film Transistors, Poly-crystalline Silicon Thin Transist , Chapter 2, Y. Kuo (ed.), 32, Kluwer Academic Pub., Feb. 2004. Google Scholar
23. Lee, C. H., P. S. Mak, and A. P. DeFonzo, "Optical control of millilmeter-wave propagation in dielectric waveguides," IEEE J. Quant. Electronics, Vol. 16, No. 3, 277-288, Mar. 1980.
doi:10.1109/JQE.1980.1070468 Google Scholar
24. Davenas, J., S. Besbes, and H. Ben Ouada, "NIR spectrophotometry characterization of ITO electronic property changes at the interface with a PPV derivative," Synethetic Metals, No. 138, 295-298, 2003.
doi:10.1016/S0379-6779(02)01296-1 Google Scholar
25. Biyikli, N., I. Kimukin, B. Butun, O. Aytur, and E. Ozbay, "ITO-Schttky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Quant. Electronics, Vol. 10, No. 4, 759-765, Aug. 2004.
doi:10.1109/JSTQE.2004.833977 Google Scholar
26. Szczyrbowski, J., A. Dietrich, and H. Hoffmann, "Optical and electrical properties of r.f. sputtered indium-tin oxide films," Phys. Stat. Sol. (a), Vol. 78, 243-252, 1983.
doi:10.1002/pssa.2210780129 Google Scholar
27. Afsar, M. N. and K. J. Button, "Precise millimetre-wave measurements of complex refractive index, complex dielectric permittivity and loss tangent of GaAs, Si, SiO2, Al2O3, BeO, Macor and Glass," IEEE Trans. Micro. Theory Tech., Vol. 31, No. 2, 217-223, Feb. 1983.
doi:10.1109/TMTT.1983.1131460 Google Scholar
28. SILVACO, Atlas user's manual, device simulation software, 2002.
29. Dressel, M. and G. Gruner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press, 2002.
30. Zhou, Y. and S. Lucyszyn, "HFSSTM modelling anomalies with THz metal-pipe rectangular waveguide structures at room temperature," PIERS Online, Vol. 5, No. 3, 201-211, 2009.
doi:10.2529/PIERS080907072308 Google Scholar
31. Patrovsky, A., M. Daigle, and K. Wu, "Coupling mechanism in hybrid SIW-CPW forward couplers for millimeter wave substrate integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2594-2602, Nov. 2008.
doi:10.1109/TMTT.2008.2005919 Google Scholar
32. Henry, M., C. E. Free, B. S. Izqueirdo, J. Batchelor, and P. Young, "Millimeter wave substrate integrated waveguide antennas: Design and fabrication analysis," IEEE Trans. Adv. Packag., Vol. 32, No. 1, 93-100, Feb. 2009.
doi:10.1109/TADVP.2008.2011284 Google Scholar
33. Samanta, K. K., D. Stephens, and I. D. Robertson, "Design and performance of a 60-GHz multi-ship module receiver employing substrate integrated waveguides ," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 961-967, Oct. 2007. Google Scholar
34. Yousef, H., S. Cheng, and H. Kratz, "Substrate integrated waveguides (SIWs) in a flexible printed circuit board for millimeter-wave applications," J. Microelectromech. Syst., Vol. 18, No. 1, 154-162, Feb. 2009.
doi:10.1109/JMEMS.2008.2009799 Google Scholar
35. Kirby, P. L., D. Pukala, H. Manohara, I. Mehdi, and J. Papapolymerou, "Characterization of micromachined silicon rectangular waveguide at 400 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 366-368, Jun. 2006.
doi:10.1109/LMWC.2006.875593 Google Scholar
36. http://www.falstad.com/embox/.