Vol. 106
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-25
Non-Iterative Imaging of Thin Electromagnetic Inclusions from Multi-Frequency Response Matrix
By
Progress In Electromagnetics Research, Vol. 106, 225-241, 2010
Abstract
Although MUSIC (MUltiple SIgnal Classification)-type algorithm has shown feasibilities as a non-iterative imaging technique of thin penetrable electromagnetic inclusion from its far-field multi-static response (MSR) matrix, it induces a poor result whenever one tries to obtain such inclusion of both dielectric and magnetic contrast with respect to the embedding homogeneous space R2 case. In this paper, we develop an improved non-iterative imaging algorithm based on the modeling of multi-frequency MSR matrix according to a rigorous asymptotic expansion of the scattering amplitude. Numerical examples exhibit that presented algorithm performs satisfactorily for single and multiple thin inclusions, even with a fair amount of random noise.
Citation
Won-Kwang Park, "Non-Iterative Imaging of Thin Electromagnetic Inclusions from Multi-Frequency Response Matrix," Progress In Electromagnetics Research, Vol. 106, 225-241, 2010.
doi:10.2528/PIER10052506
References

1. Alvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
doi:10.1016/j.jcp.2009.04.038        Google Scholar

2. Ammari, H., An Introduction to Mathematics of Emerging Biomedical Imaging, Vol. 62, Mathematics and Applications Series, 2008.

3. Ammari, H., J. Garnier, H. Kang, W. K. Park, and K. Solna, "Imaging schemes for perfectly conducting cracks,", submitted.        Google Scholar

4. Ammari, H., E. Iakovleva, and D. Lesselier, "A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency," SIAM Multiscale Modeling Simulation, Vol. 3, 597-628, 2005.
doi:10.1137/040610854        Google Scholar

5. Ammari, H. and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Vol. 1846, Lecture Notes in Mathematics, Springer-Verlag, 2004.

6. Beretta, E. and E. Francini, "Asymptotic formulas for perturbations of the electromagnetic fields in the presence of thin imperfections," Contemp. Math., Vol. 333, 49-63, 2003.        Google Scholar

7. Capdeboscq, Y. and M. Vogelius, "Imagerie electromagnetique de petites inhomogeneites," ESAIM: Proc., Vol. 22, 40-51, 2008.
doi:10.1051/proc:072204        Google Scholar

8. Chen, X.-D., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.1163/156939309789476301        Google Scholar

9. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301        Google Scholar

10. Cheng, X., B.-I.Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, Vol. 84, 11-26, 2008.
doi:10.2528/PIER08052302        Google Scholar

11. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902        Google Scholar

12. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-20, 2009.
doi:10.2528/PIER09100204        Google Scholar

13. Davy, M., J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: Theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/PIER09071004        Google Scholar

14. Delbary, F., K. Erhard, R. Kress, R. Potthast, and J. Schulz, "Inverse electromagnetic scattering in a two-layered medium with an application to mine detection," Inverse Problems, Vol. 24, 015002, 2008.
doi:10.1088/0266-5611/24/1/015002        Google Scholar

15. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01        Google Scholar

16. Fannjiang, A. and K. Solna, "Broadband resolution analysis for imaging with measurement noise," J. Opt. Soc. Am. A, Vol. 24, 1623-1632, 2007.
doi:10.1364/JOSAA.24.001623        Google Scholar

17. Hou, S., K. Huang, K. Solna, and H. Zhao, "A phase and space coherent direct imaging method," J. Acoust. Soc. Am., Vol. 125, No. 1, 227-238, 2009.
doi:10.1121/1.3035835        Google Scholar

18. Hou, S., K. Solna, and H. Zhao, "A direct imaging algorithm for extended targets," Inverse Problems, Vol. 22, 1151-1178, 2006.
doi:10.1088/0266-5611/22/4/003        Google Scholar

19. Kay, S. M., Fundamentals of Statistical Signal Processing, Detection Theory, Prentice Hall, 1998.

20. Lesselier, D. and B. Duchene, "Buried, 2-D penetrable objects illuminated by line sources: FFT-based iterative computations of the anomalous field," Progress In Electromagnetics Research, Vol. 5, 351-389, 1991.        Google Scholar

21. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, Vol. 85, 289-302, 2008.
doi:10.2528/PIER08081401        Google Scholar

22. Nazarchuk, Z. T. and K. Kobayashi, "Mathematical modelling of electromagnetic scattering from a thin penetrable target," Progress In Electromagnetics Research, Vol. 55, 95-116, 2005.
doi:10.2528/PIER05022003        Google Scholar

23. Park, W. K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
doi:10.1088/0266-5611/26/7/074008        Google Scholar

24. Park, W. K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
doi:10.1016/j.jcp.2009.07.026        Google Scholar

25. Park, W. K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
doi:10.1088/0266-5611/25/7/075002        Google Scholar

26. Park, W. K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
doi:10.1088/0266-5611/25/8/085010        Google Scholar

27. Raza, M. I. and R. E. DuBroff, "Detecting dissimilarities in EM constitutive parameters using differential imaging operator on reconstructed wavefield," Progress In Electromagnetics Research, Vol. 98, 267-282, 2009.
doi:10.2528/PIER09092403        Google Scholar

28. Semnani, A. and M. Kamyab, "Truncated cosine Fourier series expansion method for solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404        Google Scholar

29. Solimene, R., A. Brancaccio, R. Pierri, and F. Soldovieri, "TWI experimental results by a linear inverse scattering approach," Progress In Electromagnetics Research, Vol. 91, 259-272, 2009.
doi:10.2528/PIER09021609        Google Scholar

30. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001        Google Scholar