1. Alvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
doi:10.1016/j.jcp.2009.04.038 Google Scholar
2. Ammari, H., An Introduction to Mathematics of Emerging Biomedical Imaging, Vol. 62, Mathematics and Applications Series, 2008.
3. Ammari, H., J. Garnier, H. Kang, W. K. Park, and K. Solna, "Imaging schemes for perfectly conducting cracks,", submitted. Google Scholar
4. Ammari, H., E. Iakovleva, and D. Lesselier, "A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency," SIAM Multiscale Modeling Simulation, Vol. 3, 597-628, 2005.
doi:10.1137/040610854 Google Scholar
5. Ammari, H. and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Vol. 1846, Lecture Notes in Mathematics, Springer-Verlag, 2004.
6. Beretta, E. and E. Francini, "Asymptotic formulas for perturbations of the electromagnetic fields in the presence of thin imperfections," Contemp. Math., Vol. 333, 49-63, 2003. Google Scholar
7. Capdeboscq, Y. and M. Vogelius, "Imagerie electromagnetique de petites inhomogeneites," ESAIM: Proc., Vol. 22, 40-51, 2008.
doi:10.1051/proc:072204 Google Scholar
8. Chen, X.-D., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.1163/156939309789476301 Google Scholar
9. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301 Google Scholar
10. Cheng, X., B.-I.Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, Vol. 84, 11-26, 2008.
doi:10.2528/PIER08052302 Google Scholar
11. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902 Google Scholar
12. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-20, 2009.
doi:10.2528/PIER09100204 Google Scholar
13. Davy, M., J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: Theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/PIER09071004 Google Scholar
14. Delbary, F., K. Erhard, R. Kress, R. Potthast, and J. Schulz, "Inverse electromagnetic scattering in a two-layered medium with an application to mine detection," Inverse Problems, Vol. 24, 015002, 2008.
doi:10.1088/0266-5611/24/1/015002 Google Scholar
15. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01 Google Scholar
16. Fannjiang, A. and K. Solna, "Broadband resolution analysis for imaging with measurement noise," J. Opt. Soc. Am. A, Vol. 24, 1623-1632, 2007.
doi:10.1364/JOSAA.24.001623 Google Scholar
17. Hou, S., K. Huang, K. Solna, and H. Zhao, "A phase and space coherent direct imaging method," J. Acoust. Soc. Am., Vol. 125, No. 1, 227-238, 2009.
doi:10.1121/1.3035835 Google Scholar
18. Hou, S., K. Solna, and H. Zhao, "A direct imaging algorithm for extended targets," Inverse Problems, Vol. 22, 1151-1178, 2006.
doi:10.1088/0266-5611/22/4/003 Google Scholar
19. Kay, S. M., Fundamentals of Statistical Signal Processing, Detection Theory, Prentice Hall, 1998.
20. Lesselier, D. and B. Duchene, "Buried, 2-D penetrable objects illuminated by line sources: FFT-based iterative computations of the anomalous field," Progress In Electromagnetics Research, Vol. 5, 351-389, 1991. Google Scholar
21. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, Vol. 85, 289-302, 2008.
doi:10.2528/PIER08081401 Google Scholar
22. Nazarchuk, Z. T. and K. Kobayashi, "Mathematical modelling of electromagnetic scattering from a thin penetrable target," Progress In Electromagnetics Research, Vol. 55, 95-116, 2005.
doi:10.2528/PIER05022003 Google Scholar
23. Park, W. K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
doi:10.1088/0266-5611/26/7/074008 Google Scholar
24. Park, W. K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
doi:10.1016/j.jcp.2009.07.026 Google Scholar
25. Park, W. K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
doi:10.1088/0266-5611/25/7/075002 Google Scholar
26. Park, W. K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
doi:10.1088/0266-5611/25/8/085010 Google Scholar
27. Raza, M. I. and R. E. DuBroff, "Detecting dissimilarities in EM constitutive parameters using differential imaging operator on reconstructed wavefield," Progress In Electromagnetics Research, Vol. 98, 267-282, 2009.
doi:10.2528/PIER09092403 Google Scholar
28. Semnani, A. and M. Kamyab, "Truncated cosine Fourier series expansion method for solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404 Google Scholar
29. Solimene, R., A. Brancaccio, R. Pierri, and F. Soldovieri, "TWI experimental results by a linear inverse scattering approach," Progress In Electromagnetics Research, Vol. 91, 259-272, 2009.
doi:10.2528/PIER09021609 Google Scholar
30. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar