Vol. 107
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-04
A d-Band Power Amplifier with 30-GHz Bandwidth and 4.5-dBm Psat for High-Speed Communication System
By
Progress In Electromagnetics Research, Vol. 107, 161-178, 2010
Abstract
This paper presents a D-band power amplifier for high-speed communication system. The capacitive effect of interconnection via on transistor performance at high frequency is analyzed and a new via structure is employed to reduce the capacitive effect. The on-chip matching technique for high frequency amplifier is analyzed and the thin-film microstrip line matching network is used, which is combined with biasing network to reduce RF signal loss and silicon cost. The amplifier is fabricated in 0.13-μm SiGe BiCMOS process. The experimental results show a 7 dB gain at 130 GHz with 3-dB bandwidth of 30-GHz. The input return loss is better than 10 dB over 23 GHz. In addition, this amplifier achieves saturated output power (Psat) of 4.5 dBm and input 1-dB gain compression point (P1dB) of -4.5 dBm. The chip size of implemented power amplifier is only 0.22mm2.
Citation
Bo Zhang, Yong-Zhong Xiong, Lei Wang, Sanming Hu, Teck-Guan Lim, Yi-Qi Zhuang, and Joshua Le-Wei Li, "A d-Band Power Amplifier with 30-GHz Bandwidth and 4.5-dBm Psat for High-Speed Communication System," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
doi:10.2528/PIER10060806
References

1. Reynolds, S. K., B. A. Floyd, U. R. Pfeffer, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher, and M. Soyuer, "A silicon 60-GHz receiver and transmitter chipset for broadband communications," IEEE J. Solid-state Circuits, Vol. 41, No. 12, 2820-2831, Dec. 2006.        Google Scholar

2. Powell, J., H. Kim, and C. G. Sodini, "SiGe receiver front ends for millimeter-wave passive imaging," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2416-2425, Nov. 2008.        Google Scholar

3. Nicolson, S. T., A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, and S. P. Voinigescu, "A 1.2 V, 140 GHz receiver with on-die antenna in 65nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium, Vol. 229, No. 232, Jun. 2008.        Google Scholar

4. Wang, T.-P. and H. Wang, "A 71-80 GHz amplifier using 0.13-μm CMOS technology," Proc. IEEE Compound Semiconductor Integrated Circuit Symp., 279-282, 2006.        Google Scholar

5. Galal, S. and B. Razavi, "40 Gb/s amplifier and ESD protection circuit in 0.18-um CMOS technology," IEEE J. Solid-state Circuits, Vol. 39, No. 12, 2389-2396, Dec. 2004.        Google Scholar

6. Chevalier, P., B. Barbalat, M. Laurens, B. Vandelle, L. Rubaldo, B. Geynet, S. P. Voinigescu, T. O. Dickson, N. Zerounian, S. Chouteau, D. Dutartre, A. Monroy, F. Aniel, G. Dambrine, and A. Chantre, "High-speed SiGe BiCMOS technologies: 120-nm status and end-of-roadmap challenges," IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 18-23, Jan. 2007.

7. Natarajan, A., A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, "A 77-GHz phased-array transceiver with on-chip antennas in silicon: Transmitter and local LO-path phase shifting," IEEE J. Solid-State Circuits, Vol. 41, No. 12, 2807-2819, Dec. 2006.        Google Scholar

8. Hartmann, M., C. Wagner, K. Seemann, J. Platz, H. Jager, and R. Weigel, "Alow-power low-noise single-chip receiver front-end for automotive radar at 77 GHz in silicon-germanium bipolar technology," IEEE MTT-S Int. Microw. Symp. Dig., 149-152, Jun. 2007.

9. Floyd, B., S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher, "SiGe bipolar transceiver circuits operating at 60-GHz," IEEE J. Solid-State Circuits, Vol. 40, No. 1, 156-167, Jan. 2005.        Google Scholar

10. Pfeiffer, U. R. and A. Valdes-Garcia, "Millimeter-wave design considerations for power amplifiers in an SiGe process technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 57-64, Jan. 2006.        Google Scholar

11. Nicolson, S. T., K. H. K. Yau, P. Chevalier, A. Chantre, B. Sautreuil, K. W. Tang, and S. P. Voinigescu, "Design and scaling of W-band SiGe BiCMOS VCOs," IEEE J. Solid-state Circuits, Vol. 42, No. 9, 821-1833, Sep. 2007.        Google Scholar

12. Yao, T., M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, "Algorithmic design of CMOS LNAs and Pas for 60-GHz radio," IEEE J. Solid-state Circuits, Vol. 42, No. 5, 1044-1057, May 2007.        Google Scholar

13. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.        Google Scholar

14. Jimenez-Martin, J. L., V. Gonzalez-Posadas, J. E. Gonzalez-Garcia, F. J. Arques-Orobon, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Dual band high e±ciency class CE power amplifier based on CRLH diplexer," Progress In Electromagnetics Research, Vol. 97, 217-240, 2009.        Google Scholar

15. Sze, S. M., High-speed Semiconductor Devices, Wiley, New York, 1990.

16. Sandstrom, D., M. Varonen, M. Karkkainen, and K. A. I. Halonen, "W-band CMOS amplifiers achieving +10dBm saturated output power and 7.5 dB NF," IEEE J. Solid-state Circuits, Vol. 44, No. 12, 3403-3409, Dec. 2009.        Google Scholar

17. Nicolson, S. T., A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, and S. P. Voinigescu, "A 1.2 V, 140 GHz receiver with on-die antenna in 65nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium, 229-232, 2008.

18. Wu, Y. H., A. Chin, C. S. Liang, and C. C.Wu, "The performance limiting factors as RF MOSFETs scale down," IEEE Radio Frequency Integrated Circuits Symposium, 151-155, Jun. 2000.

19. Laskin, E., K. W. Tang, K. H. K. Yau, P. Chevalier, A. Chantre, B. Sautreuil, and S. P. Voinigescu, "170-GHz transceiver with on-chip antennas in SiGe technology," IEEE Radio Frequency Integrated Circuits Symposium, 637-640, Jun. 2008.        Google Scholar

20. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.        Google Scholar

21. Gonzalez, G., Microwave Transistor Amplifiers: Analysis and Design, Prentice Hall, Englewood Cliffs, NJ, 1996.

22. Xiong, Y. Z., "On-Chip transformer-based feedback CMOS power oscillator ," IEE Electronics Letters, Vol. 41, No. 3, 135-137, Aug. 2005.        Google Scholar

23. Heydari, B., M. Bohsali, E. Adabi, and A. M. Niknejad, "Millimeterwave devices and circuit blocks up to 104 GHz in 90nm CMOS," IEEE J. Solid-state Circuits, Vol. 42, No. 12, 2893-2903, Dec. 2007.        Google Scholar

24. Cripps, S. C., RF Power Amplifiers for Wireless Communications, Artech House, Norwood, MA, 1999.

25. Inoue, Y., M. Sato, T. ohki, K. Makiyama, T. Takahashi, H. Shigematsu, and T. Hirose, "A 90-GHz InP-HEMP lossy match amplifier with 20-dB gain using a broadband matching technique," IEEE J. Solid-state Circuits, Vol. 40, No. 10, 2098-2103, Oct. 2005.        Google Scholar

26. Suzuki, T., Y. Kawano, M. Sato, T. Hirose, and K. Joshin, "60 and 77 GHz power amplifiers in standard 90nm CMOS," IEEE Int. Solid-state Circuits Conf. (ISSCC) Dig. Tech. Papers, 562-636, 2008.        Google Scholar

27. Wu, Y. L., Y. A. Liu, S. L. Li, and C. P. Yu, "A new symmetric modified Wilkinson power divider using L-type dual-band impedance matching structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2351-2362, 2009.        Google Scholar

28. Mandeep, J. S., A. Lokesh, S. I. S. Hassan, M. N. Mahmud, and M. F. Ain, "Design of cartesian feedback RF power amplifier for L-band frequency range," Progress In Electromagnetics Research B, Vol. 2, 207-222, 2008.        Google Scholar

29. Demirel, S., F. Gunes, and U. Ozkaya, "Design of an ultra-wideband, low-noise amplifier using a single transistor: A typical application example," Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009.        Google Scholar

30. Gunes, F. and C. Bilgin, "A generalized design procedure for a microwave amplifier: A typical application example," Progress In Electromagnetics Research B, Vol. 10, 1-19, 2008.        Google Scholar

31. Ver Hoeye, S., C. Vazquez Antuna, M. Gonzalez Corredoiras, M. Fernandez Garcia, L. F. Herran Ontanon, and F. Las-Heras, "Multi-harmonic DC-bias network based on arbitrarily width modulated microstrip line ," Progress In Electromagnetics Research Letters, Vol. 11, 119-128, 2009.        Google Scholar

32. Zhou, S. G., B. H. Sun, J. L. Guo, Q. Z. Liu, and Y. Huang, "A new fitness function for optimizing the matching network of broadband antennas by genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 759-765, 2008.        Google Scholar

33. Gholami, M. and M. N. Jazi, "Implementation of a low loss microstrip to waveguide transition in X-Band using CAD methods ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1133-1141, 2009.        Google Scholar

34. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Guidance and leakage behavior of uniaxial ridge waveguides," Journal of Electromagnetic Waves and Applications,, Vol. 23, No. 13, 1675-1684, 2009.        Google Scholar

35. Wu, B., C. H. Liang, T. Su, and X. Lai, "Wideband coaxial filter with impedance matching for VHF/UHF diplexer design," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 131-142, 2008.        Google Scholar

36. Lee, C. H., I.-C. Wang, and L. Y. Chen, "MMR-based band-notched UWB bandpass filter design," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2407-2415, 2008.        Google Scholar