1. Chan, C. C. and K. T. Chau, Modern Electric Vehicle Technology, Oxford University Press, 2001.
2. Chau, K. T. and C. C. Chan, "Emerging energy-efficient technologies for hybrid electric vehicles," Proceedings of the IEEE, Vol. 95, No. 4, 821-835, 2007. Google Scholar
3. Sasaki, S., "Toyota's newly developed hybrid powertrain," IEEE International Symposium on Power Semiconductor Devices and ICs, 17-22, 1997. Google Scholar
4. Miller, J. M., "Hybrid electric vehicle propulsion system architectures of the e-CVT type," IEEE Trans. on Power Electron., Vol. 21, No. 3, 756-767, 2006. Google Scholar
5. Hoeijmakers, M. J. and J. A. Ferreira, "The electric variable transmission," IEEE Trans. Ind. Appl., Vol. 42, No. 4, 1092-1100, 2006. Google Scholar
6. Eriksson, S. and C. Sadarangani, "A four-quadrant HEV drive system," IEEE Vehicular Technology Conference, 1510-1514, 2002. Google Scholar
7. Atallah, K., S. Calverley, and D. Howe, "Design, analysis and realization of a high-performance magnetic gear," IEE Proc. Electric Power Appl., Vol. 151, No. 2, 135-143, 2004. Google Scholar
8. Jian, L. and K. T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Eletromagnetics Research, Vol. 92, 1-16, 2009. Google Scholar
9. Chau, K. T., D. Zhang, J. Z. Jiang, C. Liu, and Y. Zhang, "Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles," IEEE Trans. Mag., Vol. 43, No. 6, 2504-2506, 2007. Google Scholar
10. Jian, L., K. T. Chau, and J. Z. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Trans. Ind. Appli., Vol. 45, No. 3, 954-962, 2009. Google Scholar
11. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Eletromagnetics Research, Vol. 64, 239-255, 2006. Google Scholar
12. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Eletromagnetics Research, Vol. 95, 1-18, 2009. Google Scholar
13. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping finite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Eletromagnetics Research, Vol. 68, 53-70, 2007. Google Scholar
14. Chari, M., G. Bedrosian, J. D'Angelo, A. Konrad, G. Cotzas, and M. Shah, "Electromagnetic field analysis for electrical machine design," Progress In Eletromagnetics Research, Vol. 04, 159-211, 1991. Google Scholar
15. Jian, L. and K. T. Chau, "A coaxial magnetic gear with Halbach permanent magnet arrays," IEEE Trans. Energy Conv., Vol. 25, No. 2, 319-328, 2010. Google Scholar
16. Liu, J. and H. Peng, "Modeling and control of a power-split hybrid vehicle," IEEE Trans. Control System Technol., Vol. 57, No. 1, 1242-1251, 2008. Google Scholar
17. Jian, L., K. T. Chau, Y. Gong, J. Z. Jiang, C. Yu, and W. Li, "Comparison of coaxial magnetic gears with different topologies," IEEE Trans. Magn., Vol. 45, No. 10, 4526-4529, 2009. Google Scholar
18. EL-Refaie, A. M., "Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges," IEEE Trans. Ind. Electron., Vol. 57, No. 1, 107-121, 2010. Google Scholar
19. Sun, Z., J. Wang, G. Jewell, and D. Howe, "Enhanced optimal torque control of fault-tolerant PM machine under flux-weakening operation," IEEE Trans. Ind. Electron., Vol. 57, No. 1, 344-353, 2010. Google Scholar