Vol. 108
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-10
Electromagnetic Transients in Radio/Microwave Bands and Surge Protection Devices
By
Progress In Electromagnetics Research, Vol. 108, 101-130, 2010
Abstract
A comprehensive review has been done on the types of electromagnetic transients that may affect low voltage electrical systems. The paper discusses various characteristics of lightning, switching, nuclear and intentional microwave impulses giving special attention to their impact on equipment and systems. The analysis shows that transients have a wide range of rise time, half peak width, action integral etc. with respect to both source and coupling mechanism. Hence, transient protection technology should be more specific with regard to the capabilities of the protection devices. Furthermore, we discuss the components and techniques available for the protection of low voltage systems from lightning generated electrical transients and the adequacy of International Standards in addressing the transient protection issues. The outcome of our analysis questions the suitability of 8/20 μs test current impulse in representing characteristics such as the time derivative and the energy content of lightning impulses. The 10/350 μs test current impulse better represents the integrated effects of the energy content of impulse component and long continuing current. A new waveform is required to be specified for testing the ability of protective devices to respond to the fast leading edges of subsequent strokes that may appear 100s of millisecond after the preceding stroke. The test voltage waveform 1.2/50 μs should also be modified to evaluate the response of protective devices for fast leading edges of induced voltage transients. A surge protective device that is tested for lightning transients may not be able to provide defense against other transients.
Citation
Chandima Gomes, and Vernon Cooray, "Electromagnetic Transients in Radio/Microwave Bands and Surge Protection Devices," Progress In Electromagnetics Research, Vol. 108, 101-130, 2010.
doi:10.2528/PIER10070304
References

1. Sabaa, M. M. F., O. Pinto Jr., N. N. Solórzano, and A. Eybert-Berard, "Lightning current observation of an altitude-triggered flash," Atmospheric Research, Vol. 76, 402-411, 2005.
doi:10.1016/j.atmosres.2004.11.005        Google Scholar

2. Bell, T. F., S. C. Reising, and U. S. Inan, "Intense continuing currents following positive cloud-to-ground lightning associated with red sprites," Geophysical Research Letters, Vol. 25, No. 8, 1285-1288, 15, 1998.
doi:10.1029/98GL00734        Google Scholar

3. Thottappillil, R., J. D. Goldberg, V. A. Rakov, and M. A. Uman, "Properties of M-components from currents measured at triggered lightning channel base," Journal of Geophysical Research, Vol. 100, No. D12, 25, 711-25, 720, 1995.        Google Scholar

4. Shindo, T. and M. A. Uman, "Continuing current in negative cloud to-ground lightning," Journal of Geophysical Research, Vol. 94, 5189-5198, 1989.
doi:10.1029/JD094iD04p05189        Google Scholar

5. Rakov, V. A., M. A. Uman, K. J. Rambo, M. I. Fernandez, R. J. Fischer, G. H. Schnetzer, R. Thottappillil, A. Eybert-Berard, J. P. Berlandis, P. Lalande, A. Bonamy, P. Laroche, and A. Bondiou-Clergerie, "New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama," Journal of Geophysical Research, Vol. 103, 14 117-14 130, 1998.        Google Scholar

6. Rakov, V. A., D. E. Crawford, K. J. Rambo, G. H. Schnetzer, and M. A. Uman, "M-component mode of charge transfer to ground in lightning discharges," Journal of Geophysical Research, Vol. 106, No. D19, 22817-22831, October 16, 2001.
doi:10.1029/2000JD000243        Google Scholar

7. Fisher, R. J., G. H. Schnetzer, R. Thottappillil, V. A. Rakov, M. A. Uman, and J. D. Goldberg, "Parameters of triggered-lightning flashes in florida and alabama," Journal of Geophysical Research, Vol. 98, No. D12, 22887-22902, 1993.
doi:10.1029/93JD02293        Google Scholar

8. Qie, X., Y. Zhao, Q. Zhang, J. Yang, G. Feng, X. Kong, Y. Zhou, T. Zhang, G. Zhang, T. Zhang, D. Wang, H. Cui, Z. Zhao, and S. Wu, "Characteristics of triggered lightning during Shandong artificial triggering lightning experiment (SHATLE)," Atmospheric Research, Vol. 91, 310-315, 2009.
doi:10.1016/j.atmosres.2008.08.007        Google Scholar

9. Zhang, Q., X. Qie, Z. Wang, T. Zhang, Y. Zhao, J. Yang, and X. Kong, "Characteristics and simulation of lightning current waveforms during one artificially triggered lightning," Atmospheric Research, Vol. 91, 387-392, 2009.
doi:10.1016/j.atmosres.2008.04.015        Google Scholar

10. Depasse, P., "Statistics on artificially triggered lightning," Journal of Geophysical Research, Vol. 99, No. D9, 18515-18522, 1994.
doi:10.1029/94JD00912        Google Scholar

11. Berger, K., R. B. Anderson, and H. Kröninger, "Parameters of lightning flashes," CIGRE Electra, No. 41, 23-37, 1975.        Google Scholar

12. Anderson, R. B. and A. J. Eriksson, "Lightning parameters for engineering application," CIGRE Electra, Vol. 69, 65-102, 1980.        Google Scholar

13. Arturo, G. D., "Simulation of lightning electromagnetic fields and their interaction with low voltage power installations,", Ph.D. Thesis, Uppsala University Sweden, 2000.        Google Scholar

14. Silfverskiold, S., R. Thottappillil, M. Ye, V. Cooray, and V. Scuka, "Induced voltages in a low-voltage power installation network due to lightning electromagnetic fields: An experimental study," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, No. 3, August 1999.
doi:10.1109/15.784166        Google Scholar

15. Nucci, C. A., F. Rachidi, M. V. Ianoz, and C. Mazzetti, "Lightning-induced voltages on overhead lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 1, 75-86, 1993.
doi:10.1109/15.249398        Google Scholar

16. Barker, P. P., T. A. Short, A. R. Eybert-Berard, and J. P. Berlandis, "Induced voltage measurements on an experimental distribution line during nearby rocket triggered lightnimg flashes," International Transactions on Power Delivery, Vol. 1, No. 2, 980-995, 1996.
doi:10.1109/61.489360        Google Scholar

17. Schoene, J., M. A. Uman, V. A. Rakov, J. Jerauld, B. D. Hanley, K. J. Rambo, J. Howard, and B. DeCarlo, "Experimental study of lightning-induced currents in a buried loop conductor and a grounded vertical conductor," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, February 2008.
doi:10.1109/TEMC.2007.911927        Google Scholar

18. Rubinstein, M., M. Uman, P. J. Medelius, and E. M. Thomson, "Measurements of the voltage induced on an overhead power line 20m from triggered lightning," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, May 1994.        Google Scholar

19. Ren, H.-M., B.-H. Zhou, V. A. Rakov, L.-H. Shi, C. Gao, and J.-H. Yang, "Analysis of lightning-induced voltages on overhead lines using a 2-D FDTD method and agrawal coupling model," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, August 2008.
doi:10.1109/TEMC.2008.926910        Google Scholar

20. Baba, Y. and V. A. Rakov, "Voltages induced on an overhead wire by lightning strikes to a nearby tall grounded object," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 212-224, Feb. 2006.
doi:10.1109/TEMC.2006.870807        Google Scholar

21. Silveira, F. H. and S. Visacro, "The influence of attachment height on lightning-induced voltages," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, August 2008.
doi:10.1109/TEMC.2008.926885        Google Scholar

22. Gomes, C., "On the nature of lightning flashes: With special attention to the initiation, modeling, and remote sensing of return strokes,", Ph.D. Thesis, University of Colombo, 1999.        Google Scholar

23. Fisher, R. J. and G. H. Schnetzer, "Triggered lightning test program: Environments within 20 meters of the lightning channel and small area temporary lightning protection concepts,", Sandia National Laboratories Report SAND93-0311, Albuquerque, NM, 1994.        Google Scholar

24. Gopakumar, G., H. Yan, B. A. Mork, and K. K. Mustaphi, "Shunt capacitor bank switching transients: A tutorial and case study," Minnesota Power Systems Conference, No. 2-4, 1999.        Google Scholar

25. Coury, D. V., C. J. dos Santos, M. Oleskovicz, and M. C. Tavares, "Transient analysis concerning capacitor bank switching in a distribution system," Electric Power Systems Research, Vol. 65, 13-21, 2002.        Google Scholar

26. Karzas, W. J. and R. Latter, "Electromagnetic radiation from a nuclear explosion in space," Phys. Rev., Vol. 126, 1919-1926, 1962.
doi:10.1103/PhysRev.126.1919        Google Scholar

27. Karzas, W. J. and R. Latter, "The electromagnetic signal due to the interaction of nuclear explosions with the earth's magnetic field," Journal of Geophysical Research, Vol. 67, 4635, 1962.
doi:10.1029/JZ067i012p04635        Google Scholar

28. Karzas, W. J. and R. Latter, "Detection of electromagnetic radiation from nuclear explosions in space," Phys. Rev., Vol. 137, 1369, 1965.
doi:10.1103/PhysRev.137.B1369        Google Scholar

29. Longmire, C. L., "On the electromagnetic pulse produced by nuclear explosions," IEEE Transactions on Antennas and Propagation, Vol. 26, 3-13, 1978.
doi:10.1109/TAP.1978.1141796        Google Scholar

30. Lemer, E. J., "Electromagnetic pulses: Potential crippler," IEEE Spectrum, Vol. 18, No. 5, 41-46, 1981.        Google Scholar

31. El-Khamy, S. E. and A. F. El-Gendy, "Penetration of the nuclear electromagnetic pulse (EMP) in lossy dielectric media," Proceedings of the Thirteenth National Radio Science Conference, 1-B13, Cairo, Egypt, A.F., 1996.        Google Scholar

32. Riddle, T. C., "Nuclear high altitude electromagnetic pulse --- Implications for homeland security and homeland defence," MSS Dissertation, U.S. Army War College, Pennsylvania, 2004.        Google Scholar

33. Vance, E. F. and M. A. Uman, "Differences between lightning and nuclear electromagnetic pulse interactions," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 1, February 1988.
doi:10.1109/15.19889        Google Scholar

34. Uman, M. A., M. J. Master, and E. P. Krider, "A comparison of lightning electromagnetic fields with the nuclear electromagnetic pulsein the frequency range 104-107 Hz," IEEE Transactions on Electromagnetic Compatibility, Vol. 24, 410-416, November 1982.        Google Scholar

35. Lerner, E. J., "Electromagnetic pulses: Potential crippler," IEEE Spectrum, Vol. 18, 41-46, May 1981.        Google Scholar

36. Corn, P. B. and J. C. Corbin, "Letter to the editor," IEEE Spectrum, Vol. 18, 20, October 1981.        Google Scholar

37. Rustan, P. L., "Description of an aircraft lightning and simulated nuclear electromagnetic pulse (NEMP) threat based on experimental data," IEEE Transactions on Electromagnetic Compatibility, Vol. 29, No. 1, February 1987.
doi:10.1109/TEMC.1987.304332        Google Scholar

38. Lee, K. S. H., Ed., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere, Washington, DC, 1986.

39. Parfenov, V. Y., L. N. Zdoukhov, W. A. Radasky, and M. Ianoz, "Conducted IEMI threats for commercial buildings," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 404-411, August 2004.
doi:10.1109/TEMC.2004.831883        Google Scholar

40. Radasky, W., C. E. Baum, and M. W. Wik, "Introduction to the special issue on high-power electromagnetic (HPEM) and intentional electromagnetic interference," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 314-321, August 2004.
doi:10.1109/TEMC.2004.831899        Google Scholar

41. Bäckström, M. G. and K. G. Lövstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831899        Google Scholar

42. Weber, T., D. Nitsch, and J. L. ter Haseborg, "UWB coupling to modern systems and investigation of suitable protection measures," Proc. AMEREM-2002, Annapolis, MD, 2002.        Google Scholar

43. Taylor, C. D. and D. V. Giri, High-Power Microwave Systems and Effects, Taylor & Francis, New York, 1994.

44. Giri, D. V. and F. M. Tesche, "Classification of intentional electromagnetic environments (IEME)," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831819        Google Scholar

45. Mansson, D., T. Nilsson, R. Thottappillil, and M. Backström, "Propagation of UWB transients in low-voltage installation power cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 3, 2007.
doi:10.1109/TEMC.2007.902186        Google Scholar

46. Weber, T., R. Krzikalla, and J. Luiken ter Haseborg, "Linear and nonlinear filters suppressing UWB pulses," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831899        Google Scholar

47. Prather, W. D., C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, "Survey of worldwide high-power wideband capabilities," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 2004.
doi:10.1109/TEMC.2004.831826        Google Scholar

48. Camp, M., H. Gerth, H. Garbe, and H. Haase, "Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831816        Google Scholar

49. Wik, M. W. and W. A. Radasky, "Development of high-power electromagnetic (HPEM) standards," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, August 2004.
doi:10.1109/TEMC.2004.831895        Google Scholar

50. IEC Standard 61000-2-13 Ed. 1 "Environment --- High-power electromagnetic (HPEM) environments --- Radiated and conducted,", 2005.        Google Scholar

51. IEC 62305-1 "Protection against lightning --- Part 1: General principles,", 2006.        Google Scholar

52. Miyakc, K., T. Suzuki, and K. Shinjou, "Characteristics of winter lightning current on Japan sea coast," IEEE Transactions on Power Delivery, Vol. 7, No. 3, July 1992.        Google Scholar

53. Sonnadara, U., V. Cooray, and T. Götschl, "Characteristics of cloud-to-ground lightning flashes over Sweden," Phys. Scr., Vol. 74, 541-548, 2006.
doi:10.1088/0031-8949/74/5/010        Google Scholar

54. IEEE C62.41-1991 "IEEE recommended practice for surge voltages in low-voltage AC power circuits,", 1999.        Google Scholar

55. IEC 62305-4 "Protection against lightning --- Part 4: Electrical and electronic systems within structures,", 2006.        Google Scholar

56. Rakov, V. A., M. A. Uman, and R. Thottappillil, "Review of lightning properties from electric field and TV observations lightning properties from electric field and TV observations," Journal of Geophysical Research, Vol. 99, No. D5, 10745-10750, 1994.
doi:10.1029/93JD01205        Google Scholar

57. Valine, W. C. and E. P Krider, "Statistics and characteristics of cloud-to-ground lightning with multiple ground contacts," Journal of Geophysical Research (Atmospheres), Vol. 107, No. D20, AAC 8-1, 2002.        Google Scholar

58. Kawasaki, Z., K. Nomura, S. Yoshihashi, and K. Matsu-ura, "Observation of multiple stroke and multipoint discharges by means of UHF interference," Electrical Engineering in Japan, Vol. 134, No. 04, 2001.
doi:10.1002/1520-6416(200103)134:4<62::AID-EEJ8>3.0.CO;2-O        Google Scholar

59. Thottappillil, R., V. A. Rakov, M. A. Uman, W. H. Beasley, M. J. Master, and D. V. Shelukhin, "Lightning subsequent-stroke electric field peak greater than the first stroke peak and multiple ground terminations," Journal of Geophysical Research, Vol. 97, 7503-7509, 1992.
doi:10.1029/92JD00557        Google Scholar

60. Füllekrug, M., S. A. Cummer, B. Rison, W. A. Lyons, D. R. Moudry, and E. R. Williams, "Ultra-long lightning continuing current," American Geophysical Union, Fall Meeting, abstract #AE31A-0068, 2001.        Google Scholar

61. Cummer, S. A. and U. S. Inan, "Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics," Geophysical Research Letters, Vol. 24, No. 14, 1731-1734, July 15, 1997.
doi:10.1029/97GL51791        Google Scholar

62. Bejleri, M., V. A. Rakov, M. A. Uman, K. J. Rambo, C. T. Mata, and M. I. Fernandez, "Triggered lightning testing of an airport runway lighting system," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 1, 96-101, February 2004.
doi:10.1109/TEMC.2004.823617        Google Scholar

63. Rakov, V. A., M. A. Uman, M. I. Fernandez, C. T. Mata, K. J. Rambo, M. V. Stapleton, and R. R. Sutil, "Direct lightning strikes to the lightning protective system of a residential building: Triggered-lightning experiments," IEEE Trans. Power Del., Vol. 17, No. 2, 575-586, April 2002.
doi:10.1109/61.997942        Google Scholar