1. Granatstein, V. L. and I. Allexeff, High-power Microwave Sources, Artech House, Norwood, Massachusetts, 1987.
2. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys.,, Vol. 76, No. 2, 489-540, May 2004. Google Scholar
3. Thumm, M., "State-of-the-art of high-power gyro-devices and free electron masers,", Scientific Report FZKA 6224, Forschungszentrum Karlsruhe, Germany, Jan. 2008. Google Scholar
4. Lawson, W., A. Fernandez, T. Hutchings, and G. P. Saraph, "A novel hybrid slow-wave/fast-wave traveling-wave amplifier," IEEE Trans. Plasma Sci., Vol. 25, No. 5, 1150-1154, Oct. 1997. Google Scholar
5. Kumar, D., P. K. Choudhury, and O. N. Singh, "the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008. Google Scholar
6. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008. Google Scholar
7. Su, D. Y., D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008. Google Scholar
8. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1575-1586, 2010. Google Scholar
9. Zhang, X. F., L. F. Shen, J.-J. Wu, and T.-J. Yang, "Backward guiding of terahertz radiation in periodic dielectric waveguides," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 557-564, 2010. Google Scholar
10. Xu, J., W. X. Wang, L. N. Yue, Y. B. Gong, and Y. Y. Wei, "Electromagnetic wave propagation in an elliptical chiroferrite waveguide," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2021-2030, 2009. Google Scholar
11. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Guidance and leakage behavior of uniaxial ridge waveguides," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1675-1684, 2009. Google Scholar
12. Pérez, A. M., V. E. Boria, B. Gimeno, S. Anza, C. Vicente, and J. Gil, "Multipactor analysis in circular waveguides," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1575-1583, 2009. Google Scholar
13. Siong, C. C. and P. K. Choudhury, "Propagation characteristics of tapered core helical cald dielectric optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 663-674, 2009. Google Scholar
14. Zhu, Z. J. and B. F. Jia, "π-Mode stopband characteristics caused by asymmetries of support rod and loaded metal in helix structures," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2077-2085, 2008. Google Scholar
15. Shen, L. F. and Z. H. Wang, "The propagation characteristics in a doubly clad optical fiber including left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 895-904, 2008. Google Scholar
16. Soekmadji, H., S. L. Liao, and R. J. Vernon, "Trapped mode phenomena in a weakly overmoded waveguiding structure of rectangular cross section," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 143-157, 2008. Google Scholar
17. Singh, G., S. M. S. Ravi Chandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, "Analysis of dispersion and interaction impedance characteristics of an azimuthally-periodic vane-loaded cylindrical waveguide for a gyro-TWT," Int. J. Electronics, Vol. 86, No. 12, 1463-1479, Dec. 1999. Google Scholar
18. Kesari, V., P. K. Jain, and B. N. Basu, "Exploration of a double-tapered disc-loaded circular waveguide for a wideband gyro-traveling-wave tube," IEEE Electron Dev. Lett., Vol. 27, No. 3, 194-197, Mar. 2006. Google Scholar
19. Agrawal, M., G. Singh, P. K. Jain, and B. N. Basu, "Analysis of a tapered vane loaded broad-band gyro-TWT," IEEE Trans. Plasma Sci., Vol. 29, No. 3, 439-444, Jun. 2001. Google Scholar
20. Denisov, G. G., V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, "Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth," IEEE Trans. Plasma Sci., Vol. 26, No. 3, 508-518, Jun. 1998. Google Scholar
21. Cooke, S. J. and G. G. Denisov, "Linear theory of a wide-band gyro-TWT amplifier using spiral waveguide," IEEE Trans. Plasma Sci., Vol. 26, No. 3, 519-530, Jun. 1998. Google Scholar
22. Denisov, G. G., V. L. Bratman, A. W. Cross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, "Gyrotron traveling wave amplifier with a helical interaction waveguide," Phys. Rev. Lett., Vol. 81, No. 25, 5680-5683, Dec. 1998. Google Scholar
23. Choe, J. Y. and H. S. Uhm, "Analysis of the wide band gyrotron amplifier in dielectric loaded waveguide," J. Appl. Phys., Vol. 52, No. 7, 4508-4516, Jun. 1981. Google Scholar
24. Choe, J. Y., H. S. Uhm, and S. Ahn, "Slow wave gyrotron amplifier with a dielectric center rod," IEEE Trans. Microwave Theory Tech., Vol. 30, No. 5, 700-707, May 1982. Google Scholar
25. Rao, S. J., P. K. Jain, and B. N. Basu, "Two-stage dielectric loading for broadbanding a gyro-TWT," IEEE Electron. Dev. Lett., Vol. 17, No. 6, 303-305, Jun. 1996. Google Scholar
26. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of a gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. Electron Dev., Vol. 43, No. 12, 2290-2299, Dec. 1996. Google Scholar
27. Rao, S. J., P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading effects on gyro-travelling-wave tubes," Int. J. Electron., Vol. 82, No. 6, 663-675, Jun. 1997. Google Scholar
28. Choe, J. Y. and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix loaded waveguides," Int. J. Electron., Vol. 53, No. 6, 729-741, Jun. 1982. Google Scholar
29. Leou, K. C., T. Pi, D. B. Mcdermott, and N. C. Luhmann, Jr., "Circuit design for a wideband disc loaded gyro-TWT amplifier," IEEE Trans. Plasma Sc., Vol. 26, No. 3, 488-495, Jun. 1998. Google Scholar
30. Kesari, V., P. K. Jain, and B. N. Basu, "Analytical approaches to a disc loaded cylindrical waveguide for potential application in wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 32, No. 5, 2144-2151, Oct. 2004. Google Scholar
31. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a circular waveguide loaded with thick annular metal discs for wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 33, No. 4, 1358-1365, Aug. 2005. Google Scholar
32. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a disc-loaded circular waveguide for interaction impedance of a gyrotron amplifier," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 8, 1093-1110, Aug. 2005. Google Scholar
33. Qiu, C. R., Z. B. Ouyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, "Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier," IEEE Trans. Plasma Sci., Vol. 33, No. 3, 1013-1018, Jun. 2005. Google Scholar
34. Vlasov, S. N., L. I. Zagryadskaya, and I. M. Orlova, "Open coaxial resonators for gyrotrons," Radio Eng. Electron. Physics, Vol. 21, No. 5, 96-102, May 1976. Google Scholar
35. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, Jan. 1996. Google Scholar
36. Nusinovich, G. S., M. E. Read, O. Dumbrajs, and K. E. Kreischer, "Theory of gyrotrons with coaxial resonators," IEEE Trans. IEEE Trans., Vol. 41, No. 3, 433-438, Mar. 1994. Google Scholar
37. Kartikeyan, M. V., C. T. Iatrou, and M. Thumm, "A coaxial gyro-TWT," IEEE Trans. Plasma Sci., Vol. 29, No. 1, 57-61, Feb. 2001. Google Scholar
38. Wang, D., Z. Fan, D. Chen, and J. Deng, "Rigorous analysis of the coaxial disk-loaded waveguide slow-wave structures," Proc. Int. Conf. Microwave and Millimeter Wave Tech., 1-4, Apr. 18-21, 2007. Google Scholar
39. Sangster, A. J., "Small-signal analysis of the travelling-wave gyrotron using Pierce parameters," Proc. IEE, Vol. 127, No. 2, 45-52, Apr. 1980. Google Scholar