Vol. 108
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-14
A Comparative Study on ISAR Imaging Algorithms for Radar Target Identification
By
Progress In Electromagnetics Research, Vol. 108, 155-175, 2010
Abstract
Inverse synthetic aperture radar (ISAR) images represent the two-dimensional (2-D) spatial distribution of the radar cross-section (RCS) of an object and, thus, they can be applied to the problem of target identification. The traditional approach to ISAR imaging is the range-Doppler algorithm based on the 2-D Fourier transform. However, the 2-D Fourier transform often results in poor resolution ISAR images, especially when the measured frequency bandwidth and angular region are limited. Instead of the Fourier transform, high resolution spectral estimation techniques can be adopted to improve the resolution of ISAR images. These are the autoregressive (AR) model, multiple signal classification (MUSIC), and matrix enhancement and matrix pencil MUSIC (MEMP-MUSIC). In this study, the ISAR images from these high-resolution spectral estimators, as well as the FFT approach, are identified using a recently developed identification algorithm based on the polar mapping of ISAR images. In addition, each ISAR imaging algorithm is analyzed and compared in the framework of radar target identification. The results show that the dynamic range as well as the resolution of the ISAR images plays an important role in the identification performance. Moreover, the optimum size of the subarray (i.e. covariance matrix) for MUSIC and MEMP-MUSIC in terms of target identification is experimentally derived.
Citation
Jong-Il Park, and Kyung-Tae Kim, "A Comparative Study on ISAR Imaging Algorithms for Radar Target Identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901
References

1. Li, H. J. and V. Chiou, "Aerospace target identification-comparison between the matching score approach and the neural network approach," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 6, 873-893, 1993.
doi:10.1163/156939393X00921

2. Kim, K.-T., D.-K. Seo, and H.-T. Kim, "Efficient radar target recognition using the MUSIC algorithm and invariant features," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 3, 325-327, Mar. 2002.
doi:10.1109/8.999623

3. Li, H. J. and S. H. Yang, "Using range profiles as feature vectors to identify aerospace targets," IEEE Transactions on Antennas and Propagation, Vol. 41, 261-268, Mar. 1993.
doi:10.1109/8.233138

4. Musman, S., D. Kerr, and C. Bachmann, "Automatic recognition of ISAR ship images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, 1392-1404, Oct. 1996.

5. Kim, K.-T., D.-K. Seo, and H.-T. Kim, "Efficient classification of ISAR images," IEEE Transactions on Antennas and Propagation, Vol. 53, 1611-1621, May 2005.

6. Li, H. J. and K. M. Li, "Application of wavelet transform in target identification," Progress In Electromagnetics Research, Vol. 12, 57-73, 1996.

7. Seo, D.-K., K.-T. Kim, I.-S. Choi, and H.-T. Kim, "Wide-angle radar target recognition with subclass concept," Progress In Electromagnetics Research, Vol. 44, 231-248, 2004.
doi:10.2528/PIER03060301

8. Jeong, J.-H., H.-T. Kim, and K.-T. Kim, "Comparisons of four feature extraction approaches based on fisher's linear discriminant criterion in radar target recognition," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 251-265, Jan. 2007.
doi:10.1163/156939307779378781

9. Park, S.-H., K.-K. Park, J.-H. Jung, H.-T. Kim, and K.-T. Kim, "Construction of training database based on high frequency RCS prediction methods for ATR," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 693-703, 2008.
doi:10.1163/156939308784159390

10. Rothwell, E., D. P. Nyquist, K. M. Chen, and B. Drachman, "Radar target discrimination using the extinction-pulse technique," IEEE Transactions on Antennas and Propagation, Vol. 33, 929-937, Sep. 1985.
doi:10.1109/TAP.1985.1143697

11. Chen, K. M., D. P. Nyquist, E. J. Rothwell, L. L. Webb, and B. Drachman, "Radar target discrimination by convolution of radar returns with extinction pulses and single-mode extraction signals," IEEE Transactions on Antennas and Propagation, Vol. 34, 896-904, Jul. 1986.

12. Moony, J. E., Z. Ding, and L. S. Riggs, "Robust target identification in white Gaussian noise for ultra wide-band radar systems," IEEE Transactions on Antennas and Propagation, Vol. 46, 1817-1823, Dec. 1998.
doi:10.1109/8.743818

13. Toribio, R., J. Saillard, and P. Pouliguen, "Identification of radar targets in resonance zone: E-pulse techniques," Progress In Electromagnetics Research, Vol. 43, 39-58, 2003.
doi:10.2528/PIER02100201

14. Moghaddar, A. and E. K. Walton, "Time-frequency distribution analysis of scattering from waveguide cavities," IEEE Transactions on Antennas and Propagation, Vol. 41, 677-680, May 1993.
doi:10.1109/8.222287

15. Trintinalia, L. C. and H. Ling, "Interpretation of scattering phenomenology in slotted waveguide structures via time-frequency processing," IEEE Transactions on Antennas and Propagation, Vol. 43, 1253-1261, Nov. 1995.

16. Kim, H. and H. Ling, "Wavelet analysis of radar echo from finite-sized targets," IEEE Transactions on Antennas and Propagation, Vol. 41, 200-207, Feb. 1993.
doi:10.1109/8.214611

17. Lazarov, A. D., M. Martorella, and C. Minchev, "Three dimensional Barker's ISAR signal and image reconstruction," IEEE Radar Conference, RADAR'08, 1-6, Rome, Italy, May 26-30, 2008.

18. Jeong, H.-R., H.-T. Kim, and K.-T. Kim, "Application of subarray averaging and entropy minimization algorithm to stepped-frequency ISAR autofocus," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 1144-1154, Apr. 2008.
doi:10.1109/TAP.2008.919208

19. Park, S.-H., K.-K. Park, J.-H. Jung, H.-T. Kim, and K.-T. Kim, "ISAR imaging of multiple targets using edge detection and hough transform," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 365-373, 2008.
doi:10.1163/156939308784160622

20. Park, S.-H., H.-T. Kim, and K.-T. Kim, "Stepped-frequency isar motion compensation using particle swarm optimization with an island model," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.
doi:10.2528/PIER08082107

21. Choi, G.-G., S.-H. Park, H.-T. Kim, and K.-T. Kim, "ISAR imaging of multiple targets based on particle swarm optimization and hough transform," Journal of Electromagnetic Waves and Applications, Vol. 23, 1825-1834, 2009.
doi:10.1163/156939309789932322

22. Park, S.-H., H.-T. Kim, and K.-T. Kim, "Segmentation of ISAR images of targets moving in formation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 4, Apr. 2010.

23. Cao, P., M. Xing, G. Sun, Y. Li, and Z. Bao, "Minimum entropy via subspace for ISAR autofocus," IEEE Geoscience and Remotec Sensing Letters, Vol. 7, 205-209, 2010.
doi:10.1109/LGRS.2009.2031658

24. Stoica, P. and R. L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 1997.

25. Barabell, A. J., "Improving the resolution performance of eigenstructure-based direction-finding algorithms," Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 336-339, Boston, MA, 1983.

26. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, 984-995, Jul. 1989.

27. Gupta, I. J., "High resolution radar imaging using 2-D linear prediction," IEEE Transactions on Antennas and Propagation, Vol. 42, 31-37, Jan. 1994.
doi:10.1109/8.272298

28. Kim, K.-T., S.-W. Kim, and H.-T. Kim, "Two-dimensional ISAR imaging using full polarization and super-resolution processing techniques," IEE Proceedings Radar, Sonar, and Navigation, Vol. 145, 240-246, Aug. 1998.
doi:10.1049/ip-rsn:19982033

29. Odendaal, J. W., E. Barnard, and C. W. I. Pistorius, "Two-dimensional superresolution radar imaging using the MUSIC algorithm," IEEE Transactions on Antennas and Propagation, Vol. 42, 1386-1391, Oct. 1994.

30. Hua, Y., "Estimating two-dimensional frequencies by matrix enhancement and matrix pencil," IEEE Transactions on Signal Processing, Vol. 40, 2267-2280, Sep. 1992.
doi:10.1109/78.157226

31. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2 Ed., John Wiley & Sons, Inc., 2001.

32. Theodoridis, S. and K. Koutroumbas, Pattern Recognition, Academic Press, 1999.

33. Lee, K.-C., J.-S. Ou, and M.-C. Fang, "Application of svd noise-reduction technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 81, 447-459, 2008.
doi:10.2528/PIER08032101

34. Huang, C.-W. and K.-C. Lee, "Application of ica technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305