1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987. Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987. Google Scholar
3. Jensen, J. S. and O. Sigmund, "Systematic design of photonic crystal structures using topology optimization: Low-loss waveg-uide bends," Appl. Phys. Lett., Vol. 84, No. 12, 2022-2024, 2004. Google Scholar
4. Bjarklev, A., J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. Tanggaard Larsen, T. Sorensen, K. Hougaard, and O. Bang, "Photonic crystal structures in sensing technology," Proc. of SPIE, Vol. 5502, 9-16, 2004. Google Scholar
5. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. Sotomayor Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003. Google Scholar
6. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008. Google Scholar
7. Wu, J. J., D. Chen, K. L. Liao, T. J. Yang, and W. L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimensional elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009. Google Scholar
8. Qi, L. M., Z. Q. Yang, X. Gao, W. X. Liu, and Z. Liang, "Research on three types of rhombus lattice photonic band structures," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1115-1164, 2008. Google Scholar
9. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003. Google Scholar
10. Anderson, C. M. and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett., Vol. 77, No. 14, 2949-2952, 1996. Google Scholar
11. Kee, C. S., J. E. Kim, and H. Y. Park, "Absolute photonic band gap in a two-dimensional square lattcie of square dielectric rods in air," Phys. Rev. E, Vol. 56, No. 6, R6291-R6293, 1997. Google Scholar
12. Shen, L. F., S. L. He, and S. S. Xiao, "Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels," Phys. Rev. B, Vol. 66, No. 16, 165315-1-165315-6, 2002. Google Scholar
13. Chern, R. L., C. C. Chang, C. C. Chang, and R. R. Hwang, "Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration," Phys. Rev. E, Vol. 68, No. 2, 026704-1-026704-5, 2003. Google Scholar
14. Anderson, C. M. and K. P. Giapis, "Symmetry reduction in group 4mm photonic crystals," Phys. Rev. B, Vol. 56, No. 12, 7313-7320, 1997. Google Scholar
15. Malkova, N., S. Kim, T. Dilazaro, and V. Gopalan, "Symmetrical analysis of complex two-dimensional hexagonal photonic crystals," Phys. Rev. B, Vol. 67, No. 12, 125203-1-125203-9, 2003. Google Scholar
16. Zaccaria, R. P., P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, "Manipulating full photonic band gap in two dimensional birefringent photonic crystals," Opt. Express, Vol. 16, No. 19, 14812-14820, 2008. Google Scholar
17. Sigmund, O. and K. Hougaard, "Geometric properties of optimal photonic crystals," Phys. Rev. Lett., Vol. 100, No. 15, 153904-1-153904-4, 2008. Google Scholar