1. Nucci, C. A., "Lightning-induced voltages on overhead power lines. Part I: Return stroke current models with specified channel-base current for the evaluation of the return stroke electromagnetic fields," Electra, Vol. 161, 75-102, 1995. Google Scholar
2. Yang, C. and B. Zhou, "Calculation methods of electromagnetic fields very close to lightning," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, 133-141, 2004.
doi:10.1109/TEMC.2004.823626 Google Scholar
3. Uman, M., The Lightning Discharge, Dover Pub., 2001.
4. Rakov, V. and M. Uman, "Review and evaluation of lightning return stroke models including some aspects of their application," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, 403-426, 1998.
doi:10.1109/15.736202 Google Scholar
5. Heidler, F., "Analytische blitzstromfunktion zur LEMP-berechnung," 18th ICLP, 63-66, Munich, Germany, 1985. Google Scholar
6. Pierce, E. T., "Triggered lightning and some unsuspected lightning hazards (Lightning triggered by man and lightning hazards)," ONR Naval Res. Rev., Vol. 25, 1972. Google Scholar
7. M'ziou, L., A. Mokhnache, A. Boubakeur, and R. Kattan, "Validation of the Simpson-finite-difference time domain method for evaluating the electromagnetic field in the vicinity of the lightning channel initiated at ground level," IET, Vol. 3, 279-285, 2009.
doi:10.1049/iet-com:20080050 Google Scholar
8. Djalel, H. A. D. and C. Benachiba, "Coupling phenomenon between the lightning and high voltage networks," Proceedings of Word Academy of Science, Engineering and Technology (WASET), Vol. 21, 95-101, 2007. Google Scholar
9. Heidler, F., "Travelling current source model for LEMP calculation," 6th Symposium and Technical Exhibition on Electromagnetic Compability, 157-162, Zurich, 1985. Google Scholar
10. Feizhou, Z. and L. Shanghe, "A new function to represent the lightning return stroke currents," IEEE Transactions on Electromagnetic Compability, Vol. 44, 2002. Google Scholar
11. Eslahchi, M. R., M. Masjed-Jamei, and E. Babolian, "On numerical improvement of Gauss-Lobatto quadrature rules," Applied Mathematics and Computation, Vol. 164, 707-717, 2005.
doi:10.1016/j.amc.2004.04.113 Google Scholar
12. Zhou, X., "On independence completeness of Maxwell's equations and uniqueness theorems in electromagnetics," Progress In Electromagnetic Research, Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302 Google Scholar
13. Chen, J. and Q. H. Liu, "A non-spurious vector spectral element method for Maxwell's equations," Progress In Electromagnetics Research, Vol. 96, 205-215, 2009.
doi:10.2528/PIER09082705 Google Scholar
14. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
15. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2 Ed., Ch. 3, CRC Press, 2001.
16. Young, J. L., R. O. Nelson, and D. V. Gaitonde, "A detailed examination of the finite-volume, time-domain method for Maxwell's equations," Progress In Electromagnetic Research, Vol. 28, 231-255, 2000.
doi:10.2528/PIER99100101 Google Scholar
17. Sartori, C. and J. Cardoso, "An analytical-FDTD method for near LEMP calculation," IEEE Transactions on Magnetics, Vol. 36, 1631-1634, 2000.
doi:10.1109/20.877754 Google Scholar
18. Silva-Macêdo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended FDTD method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507 Google Scholar
19. Jiang, Y.-N., D.-B. Ge, and S.-J. Ding, "Analysis of TFSF boundary for 2D-FDTD with plane P-wave propagation in layered dispersive and lossy media," Progress In Electromagnetics Research, Vol. 83, 157-172, 2008.
doi:10.2528/PIER08042201 Google Scholar