Vol. 110
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-10
Transport and Electronic Properties of Two Dimensional Electron Gas in Delta-Migfet in GaAs
By
Progress In Electromagnetics Research, Vol. 110, 59-80, 2010
Abstract
The objective of this work is to analyze electronic transport phenomena, due to ionized impurity scattering in δ-MIGFET (Delta-Multiple Independent Gate Field Effect Transistor). In this work, we report theoretical results for electronic transport in a delta-MIGFET using the device electronic structure and analytical expression of mobility and conductivity. The results show that the analytical mobility and conductivity are a good way to analyze transport in this device. We find the relative mobility as a linear and increasing function in different modes; also, we find transconductance as an almost flat function in all the evaluated interval. Finally, we analyze the differential capacitance and resistivity, and we report regions where this device is operating in digital and analogue mode. These regions are delimited in terms of intrinsic and extrinsic parameters of this device in symmetrical mode.
Citation
Outmane Oubram Luis Manuel Gaggero-Sager Ali Bassam German A. Luna Acosta , "Transport and Electronic Properties of Two Dimensional Electron Gas in Delta-Migfet in GaAs ," Progress In Electromagnetics Research, Vol. 110, 59-80, 2010.
doi:10.2528/PIER10081306
http://www.jpier.org/PIER/pier.php?paper=10081306
References

1. Kimura, S., D. Hisamoto, and N. Sugii, "Prospect of Si semiconductor devices in nanometer era," Hitachi Review, Vol. 54, No. 1, 2-8, 2005.

2. Munteanu, D. and J. L. Autran, "3-D simulation analysis of bipolar amplification in planar double-gate and FinFET with independent gates," IEEE Trans. Nucl. Sci., Vol. 56, No. 4, 2083-2090, 2009.
doi:10.1109/TNS.2009.2016343

3. Giroldo, Jr., J. and M. Bellodi, "Drain leakage current in MuGFETs at high temperatures," ECS Trans., Vol. 28, No. 4, 1169, 2010.

4. Sampedro, C., F. Gámiz, A. Godoy, R. Valín, A. García-Loureiro, and F. G. Ruiz, "Multi-subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI," Solid-State Electron., Vol. 54, No. 2, 131-136, 2010.
doi:10.1016/j.sse.2009.12.007

5. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008.
doi:10.2528/PIER08081704

6. Mathew, L., Y. Du, A. V.-Y. Thean, M. Sadd, A. Vandooren, C. Parker, T. Stephens, R. Mora, R. Rai, M. Zavala, D. Sing, S. Kalpat, J. Hughes, R. Shimer, S. Jallepalli, G. Workman, W. Zhang, J. G. Fossum, B. E. White, B.-Y. Nguyen, and J. Mogab, "CMOS vertical multiple independent gate field effect transistor (MIGFET)," IEEE SOI Conference, 187-189, 2004.

7. Mathew, L., et al., "Multiple independent gate field effect transistor (MIGFET) multi-Fin RF mixer architecture, three independent gates (MIGFET-T) operation and temperature characteristics," IEEE VLSI Technology, 200-201, 2005.

8. Baviskar, P., S. Jain, and P. Vinchurkar, "Nano scale soi mosfet structures and study of performance factors," Int. J. Comput. Appl., Vol. 1, No. 28, 2010.

9. Jagadesh Kumar, M. and G. V. Reddy, "Diminished short channel effects in nanoscale double-gate silicon-on-insulator metal-oxide-semiconductor field-effect-transistors due to induced back-gate step potential," Jpn. J. Appl. Phys., Vol. 44, No. 9A, 6508-6509, 2005.
doi:10.1143/JJAP.44.6508

10. Hu, G., R. Liu, Z. Qiu, L. Wang, and T. Tang, "Quantum mechanical effects on the threshold voltage of double-gate metal-oxide-semiconductor field-effect transistors," Jpn. J. Appl. Phys., Vol. 49, 034001, 2010.
doi:10.1143/JJAP.49.034001

11. Gong, J. and P. C. H. Chan, "Linearity study of multiple independent gate field effect transistor (MIGFET) under symmetric and asymmetric operations," Solid-State Electron., Vol. 52, No. 2, 259-263, 2008.
doi:10.1016/j.sse.2007.08.010

12. Hamed, H. F. A., S. Kaya, and J. A. Starzyk, "Use of nano-scale double-gate MOSFETs in low-power tunable current mode analog circuits," Analog. Integr. Circ. S., Vol. 54, No. 3, 211-217, 2008.
doi:10.1007/s10470-008-9134-4

13. Munteanu, D., M. Moreau, and J. L. Autran, "A compact model for the ballistic subthreshold current in ultra-thin independent double-gate MOSFETs," Mol. Simulat., Vol. 35, No. 6, 491-497, 2009.
doi:10.1080/08927020902801548

14. Jiménez, D., J. J. Sáenz, B. Iñíquez, J. Suñé, L. F. Marsal, and J. Pallarès, "Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect-transistor," J. Appl. Phys., Vol. 94, No. 2, 1061-1068, 2003.
doi:10.1063/1.1582557

15. Moreno, E., J. B. Roldán, F. G. Ruiz, D. Barrera, A. Godoy, and F. Gámiz, "An analytical model for square GAA MOSFETs including quantum effects," Solid-State Electron., Vol. 54, No. 11, 1463-1469, 2010.
doi:10.1016/j.sse.2010.05.032

16. Chaisantikulwat, W., M. Mouis, G. Ghibaudo, S. Cristoloveanu, J. Widiez, M. Vinet, and S. Deleonibus, "Experimental evidence of mobility enhancement in short-channel ultra-thin body double-gate MOSFETs by magnetoresistance technique," Solid-State Electron., Vol. 51, No. 11-12, 1494-1499, 2007.
doi:10.1016/j.sse.2007.09.017

17. Shrivastava, M., M. S. Baghini, A. B. Sachid, D. K. Sharma, and V. R. Rao, "A novel and robust approach for common mode feedback using IDDG FinFET," IEEE Trans. Electron Devices, Vol. 55, No. 11, 3274-3282, 2008.
doi:10.1109/TED.2008.2004475

18. Nakajima, S., N. Kuwata, N. Shiga, K. Otobe, K. Matsuzaki, T. Sekiguchi, and H. Hayashi, "Characterization of double pulse-doped channel GaAs MESFETs," IEEE Trans. Electron Devices, Vol. 14, No. 3, 146-148, 1993.
doi:10.1109/55.215139

19. Roberts, J. M., J. J. Harris, N. J. Woods, and M. Hopkinson, "Investigation of delta-doped quantum wells for power FET applications," Superlattice Microst., Vol. 23, No. 2, 187-190, 1998.
doi:10.1006/spmi.1996.0242

20. Kao, M. J., W. C. Hsu, R. T. Hsu, Y. H. Wu, and T. Y. Lin, "Characteristics of graded-like multiple-delta-doped GaAs field effect transistors," Appl. phys. Lett., Vol. 66, No. 19, 2505, 1995.
doi:10.1063/1.113148

21. Oubram, O. and L. M. Gaggero-Sager, "Transport properties of delta doped field effect transistor," Progress In Electromagnetics Research Letters, Vol. 2, 81-87, 2008.
doi:10.2528/PIERL07122810

22. Gaggero-Sager, L. M. and R. Pérez-Alvarez, "A simple model for delta-doped field-effect transistor electronic states," J. Appl. Phys., Vol. 78, No. 7, 4566-4569, 1995.
doi:10.1063/1.359800

23. Oubram, O. and L. M. Gaggero-Sager, "Relative mobility and relative conductivity in ALD-FET (atomic layer doped-field effect transistor) in GaAs," PIERS Proceedings, 1186-1190, Beijing, China, March 23-27, 2009.

24. Martínez-Orazco, J. C., L. M. Gaggero-Sager, and S. J. Vlaev, "Differential capacitance as a method of determining the presence of a quasi-electronic gas bidemensional," Solid-State Electron., Vol. 48, No. 12, 2277-2280, 2004.
doi:10.1016/j.sse.2004.04.010

25. Martínez-Orazco, J. C., L. M. Gaggero-Sager, and S. J. Vlaev, "A Simple model for diffential capacitance profile in the atomic layer doped field effect transistor (ALD-FET) in GaAs," Mat. Sci. Eng. B-solid, Vol. 84, No. 3, 155-158, 2001.
doi:10.1016/S0921-5107(00)00583-3

26. Chakhnakia, Z. D., L. V. Khvedelidze, N. P. Khuchua, R. G. Melkadze, G. Peradze, and T. B. Sakharova, "AlGaAs-GaAs heterostructure δ-doped field effect transistor (δ-FET)," Proc. SPIE, Vol. 5401, 354-360, 2004.
doi:10.1117/12.558432

27. Bènière, F., R. Chaplain, M. Gauneau, V. Redd, and A. Régrény, "Delta-doping in diffusion studies," J. Phys. III France 3, Vol. 3, No. 12, 2165-2171, 1993.
doi:10.1051/jp3:1993259

28. Schubert, E. F., A. Fischer, and K. Ploog, "The delta-doped field-effect transistor (δ-FET)," IEEE Trans. Electron Devices, Vol. 33, No. 5, 625-632, 1986.
doi:10.1109/T-ED.1986.22543

29. Chen, X. and B. Nabet, "A closed-form expression to analyze electronic properties in delta-doped heterostructures," Solid-State Electron., Vol. 48, No. 12, 2321-2327, 2004.
doi:10.1016/j.sse.2004.04.011

30. Ozturk, E., "Effect of magnetic field on a p-type d-doped GaAs layer," Chinese Phys. Lett., Vol. 27, No. 7, 077302, 2010.
doi:10.1088/0256-307X/27/7/077302

31. Ozturk, E., "Optical intersubband transitions in double Si d-doped GaAs under an applied magnetic field," Superlattices and Microstructures, Vol. 46, No. 5, 752-759, 2009.
doi:10.1016/j.spmi.2009.07.013

32. Ozturk, E., M. K. Bahar, and I. Sokmen, "Subband structure of p-type δ-doped GaAs as dependent on the acceptor concentration and the layer thickness," Eur. Phys. J. Appl. Phys., Vol. 41, No. 3, 195-200, 2008.
doi:10.1051/epjap:2008018

33. Rhoderick, E. H. and R. H. Williams, Metal-semiconductor Contacts, Clarendon Press, Oxford, 1988.

34. Rodríguez-Vargas, I., L. M. Gaggero-Sager, and V. R. Velasco, "Thomas-Fermi-Dirac theory of the hole gas of a double p-type delta-doped GaAs quantum wells," Surf. Sci., Vol. 537, No. 1, 75-83, 2003.
doi:10.1016/S0039-6028(03)00546-6

35. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902

36. Liu, C.-C., Y.-H. Chang, T.-J. Yang, and C.-J. Wu, "Narrowband filter in a heterostructured multilayer containing ultrathin metalic films," Progress In Electromagnetics Research, Vol. 96, 329-346, 2009.
doi:10.2528/PIER09090704

37. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102