1. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.
doi:10.2528/PIER08041404 Google Scholar
2. Andres-Garcia, B., L. E. Garcia Munoz, V. Gonzalez-Posadas, F. J. Herraiz-Martnez, and D. Segovia-Vargas, "Filtering lens structure based on srrs in the low THz band," Progress In Electromagnetics Research , Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105 Google Scholar
3. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902 Google Scholar
4. Solimene, R., A. Brancaccio, R. Pierri, and F. Soldovieri, "TWI experimental results by a linear inverse scattering approach," Progress In Electromagnetics Research, Vol. 91, 259-272, 2009.
doi:10.2528/PIER09021609 Google Scholar
5. Poli, L. and P. Rocca, "Exploitation of TE-TM scattering data for microwave imaging through the multi-scaling reconstruction strategy," Progress In Electromagnetics Research, Vol. 99, 245-290, 2009.
doi:10.2528/PIER09101105 Google Scholar
6. Andreasen, M., "Scattering from bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 2, 303-310, Mar. 1965.
doi:10.1109/TAP.1965.1138406 Google Scholar
7. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical techniques for treating bodies of revolution," Tech. Rep., Vol. 22, University of Mississippi, Mar. 1979. Google Scholar
8. Huddleston, P. L., L. N. Medgyesi-Mitschang, and J. M. Putnam, "Combined field integral equation formulation for scattering by dielectrically coated conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 4, 510-520, Apr. 1986.
doi:10.1109/TAP.1986.1143846 Google Scholar
9. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1977.
doi:10.1029/RS012i005p00709 Google Scholar
10. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 8, 275-285, 1984.
doi:10.1109/TAP.1984.1143430 Google Scholar
11. Morgan, M. and K. Mei, "Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 2, 202-214, Mar. 1979.
doi:10.1109/TAP.1979.1142065 Google Scholar
12. Greenwood, A. D. and J.-M. Jin, "Finite-element analysis of complex axisymmetric radiating structures," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 8, 1260-1266, Aug. 1999.
doi:10.1109/8.791941 Google Scholar
13. Jin, J.-M., "A highly robust and versatile finite element boundary integral hybrid code for scattering by bor objects," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2274-2281, Jul. 2005. Google Scholar
14. Dunn, E. A., J.-K. Byun, E. D. Branch, and J.-M. Jin, "Numerical simulation of BOR scattering and radiation using a higher order FEM," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, 945-952, Mar. 2006.
doi:10.1109/TAP.2006.869936 Google Scholar
15. Yan, W.-Z., Y. Du, H. Wu, D. W. Liu, and B. I. Wu, "Emscattering from a long dielectric circular cylinder," Progress In Electromagnetics Research, Vol. 85, 39-67, 2008.
doi:10.2528/PIER08081106 Google Scholar
16. Yan, W.-Z., Y. Du, Z. Y. Li, E. X. Chen, and J. C. Shi, "Characterization of the validity region of the extended T-matrix method for scattering from dielectric cylinders with finite length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
doi:10.2528/PIER09083101 Google Scholar
17. Hamid, A.-K., I. R. Ciric, and M. Hamid, "Iterative solution of the scattering by an arbitrary configuration of conducting or dielectric spheres," IEE Proceedings H Microwaves, Antennas and Propagation, Vol. 138, No. 6, 565-572, Dec. 1991.
doi:10.1049/ip-h-2.1991.0094 Google Scholar
18. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804 Google Scholar
19. Quick Wave 3D (QWED), http://www.qwed.com.pl/.
20. Stratton, J. A., Electromagnetic Theory, Wiley, 2007.
21. Tsang, L., J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wiley and Sons, INC., New York, 2000.
doi:10.1002/0471224286
22. Mackowski, D. W., "Analysis of radiative scattering for multiple sphere configurations," Proceedings of the Royal Society, Series A --- Mathematical and Physical Sciences, Vol. 433, No. 1889, 599-614, Jun. 1991.
doi:10.1098/rspa.1991.0066 Google Scholar
23. Taflove, A., The Finite-difference Time-domain Method, Artech House, 1995.
24. Polewski, M. and J. Mazur, "Scattering by an array of conducting lossy dielectric, ferrite and pseudochiral cylinders," Progress In Electromagnetics Research, Vol. 38, 283-310, May 2002.
doi:10.2528/PIER02041000 Google Scholar
25. Dahlquist, G. and A. Bjorck, Numerical Methods, Prentice Hall, 1974.