Vol. 111
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-07
A Novel Bandwidth Enhancement Technique for X-Band RF MEMS Actuated Reconfigurable Reflectarray
By
Progress In Electromagnetics Research, Vol. 111, 179-196, 2011
Abstract
In this paper, a wideband microstrip antenna for X-band (8.2 GHz--12.4 GHz) applications is introduced. First, simple patch antennas are studied. The resultant design demonstrates better performance than the previously published narrowband microstrip reflectarray antennas. The important features of these elements are simple structure, linear operation, and use of RF MEMS switches for programmable pattern control. Next employing our novel method, this narrowband structure is converted to broadband reflectarray antenna that can cover the whole X band. This novel idea is based on introducing several ground plane slots and controlling their electrical lengths by RF MEMS switches. By means of this method, 952 and 587 degree phase swing is achieved for continuous and discrete slot length variation, respectively. Application of this method along with smaller switches results in phase swing improvement of up to 1616 degree. In all structures a RT duroid (5880) substrate is selected to lower the back radiation. The achieved return loss in all cases is less than 0.32 dB. In comparison with the previous publications, our novel method has more generalization capability and results in single layered broadband reconfigurable microstrip reflectarray antennas with linear phase swing, lower cost, and ease of RF MEMS implementation.
Citation
Younes Radi, Saeid Nikmehr, and Ali Pourziad, "A Novel Bandwidth Enhancement Technique for X-Band RF MEMS Actuated Reconfigurable Reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
doi:10.2528/PIER10101201
References

1. Berry, D. G., R. G. Malech, and W. A. Kennedy, "The reflectarray antenna," IEEE Trans. Antennas Propag., 1963.        Google Scholar

2. Malagisi, C. S., "Microstrip disc element reflectarray," Electronics and Aerospace Systems Convention, 186-192, Sep. 1978.        Google Scholar

3. Munson, R. E., H. Haddad, and J. Hanlen, "Microstrip reflectarray antenna for satellite communication and RCS enhancement or reduction," US Patent 4684952, Aug. 1987.        Google Scholar

4. Huang, J., "Microstrip reflectarray," IEEE International Symposium on Antennas and Propagation, Vol. 2, 612-515, Jun. 1991.        Google Scholar

5. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronics Letters, Vol. 29, No. 8, 657-658, Apr. 1993.
doi:10.1049/el:19930440        Google Scholar

6. Cadoret, D., A. Laisne, R. Gillard, L. Le Coq, and H. Legay, "Design and measurement of new reflectarray antenna using microstrip patches loaded with slot," Electronics Letters, Vol. 41, No. 11, 623-624, May 2005.
doi:10.1049/el:20050548        Google Scholar

7. Ismail, M. Y. and M. Inam, "Performance improvement of reflectarrays based on embedded slots configurations," Progress In Electromagnetics Research C, Vol. 14, 67-78, 2010.
doi:10.2528/PIERC10041904        Google Scholar

8. Huang, J. and R. J. Pogorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 650-656, May 1998.
doi:10.1109/8.668907        Google Scholar

9. Martynuk, A. E., J. I. M. Lopez, and N. A. Martynuk, "Spiraphasetype reflectarrays based on loaded ring slot resonators," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 142-153, Jan. 2004.
doi:10.1109/TAP.2003.820976        Google Scholar

10. Strassner, B., C. Han, and K. Chang, "Circularly polarized reflectarray with microstrip ring elements having variable rotation angles," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 1122-1125, Apr. 2004.
doi:10.1109/TAP.2004.825635        Google Scholar

11. Menzel, W., D. Pilz, and M. Al-Tikriti, "Millimeter-wave folded reflector antennas with high gain, low loss, and low profile," IEEE Antennas Propag. Mag., Vol. 44, No. 3, 24-29, Jun. 2002.
doi:10.1109/MAP.2002.1028731        Google Scholar

12. Mueller, S., A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, "Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, Part 2, 1937-1945, Jun. 2005.        Google Scholar

13. Mossinger, A., R. Marin, S. Mueller, J. Freese, and R. Jakoby, "Electronically reconfigurable reflectarrays with nematic liquid crystals," Electronics Letters, Vol. 42, 899-900, Aug. 2006.
doi:10.1049/el:20061541        Google Scholar

14. Marin, R., A. Moessinger, J. Freese, A. Manabe, and R. Jakoby, "Realization of 35 GHz steerable reflectarray using highly anisotropic liquid crystal," 2006 IEEE APS/URSI Symposium on Antennas and Propagation, Albuquerque, NM, USA, Jul. 2006.        Google Scholar

15. Ismail, M. Y., W. Hu, R. Cahill, V. F. Fusco, H. S. Gamble, D. Linton, R. Dickie, S. P. Rea, and N. Grant, "Phase agile reflectarray cells based on liquid crystals," Proc. IET Microw. Antennas Propag., Vol. 1, No. 4, 809-814, 2007.
doi:10.1049/iet-map:20070061        Google Scholar

16. Marin, R., A. Moessinger, F. Goelden, S. Mueller, and R. Jakoby, "77 GHz reconfigurable reflectarray with nematic liquid crystal," Proc. European Conf. Antennas Propag., Edinburgh, UK, Oct. 2007.        Google Scholar

17. Hu, W., R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, "Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3112-3117, Oct. 2008.
doi:10.1109/TAP.2008.929460        Google Scholar

18. Romanofsky, R. R, J. T. Bernhard, F. W. van Keuls, F. A. Miranda, G. Washington, and C. Canedy, "K-band phased array antennas based on Ba0.60Sr0.40TiO3 thin film phase shifters," IEEE Transactions on Microwave Theory and Techniques, 2504-2510, Dec. 2000.
doi:10.1109/22.899005        Google Scholar

19. Scheele, P., A. Giere, Y. Zheng, F. Goelden, and R. Jakoby, "Modeling and applications of ferroelectric-thick film devices with resistive electrodes for linearity improvement and tuning-voltage reduction," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 2, 383-390, Feb. 2007.
doi:10.1109/TMTT.2006.889351        Google Scholar

20. Zheng, Y., A. Hristov, A. Giere, and R. Jakoby, "Suppression of harmonic radiation of tunable planar inverted-F antenna by ferroelectric varactor loading," 2008 IEEE MTT-S International Microwave Symposium Digest, 959-962, 2008.
doi:10.1109/MWSYM.2008.4632993        Google Scholar

21. Apert, C., T. Koleck, P. Dumon, T. Dousset, and C. Renard, "ERASP: A new reflectarray antenna for space applications," EuCAP 06, Nice, Nov. 6-10, 2006.        Google Scholar

22. Sanyal, S. K., Q. M. Alfred, and T. Chakravarty, "A novel beam-switching algorithm for programmable phased array antenna," Progress In Electromagnetics Research, Vol. 60, 187-196, 2006.
doi:10.2528/PIER05122502        Google Scholar

23. Bialkowski, M. E., A. W. Robinson, and H. J. Song, "Design, development, and testing of X-band amplifying reflectarrays," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1065-1076, Aug. 2002.
doi:10.1109/TAP.2002.801393        Google Scholar

24. Sievenpiper, D. F., J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, "Two-dimensional beam steering using an electrically tunable impedance surface," IEEE Trans. Antennas Propag., Vol. 51, 2713-2722, Oct. 2003.        Google Scholar

25. Hum, S. V., M. Okoniewski, and R. J. Davies, "Realizing an electronically tunable reflectarray using varactor diode-tuned elements," IEEE Microwave and Wireless Components Letters, Vol. 15, Jun. 2005.        Google Scholar

26. Riel, M. and J.-J. Laurin, "Design of an electronically beam scanning reflectarray using aperture-coupled elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1260-1266, May 2007.
doi:10.1109/TAP.2007.895586        Google Scholar

27. Hum, S., M. Okoniewski, and R. Davies, "Modeling and design of electronically tunable reflectarrays," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2200-2210, Aug. 2007.
doi:10.1109/TAP.2007.902002        Google Scholar

28. Chaharmir, M., J. Shaker, M. Cuhaci, and A.-R. Sebak, "Novel photonically-controlled reflectarray antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1134-1141, Apr. 2006.
doi:10.1109/TAP.2006.872644        Google Scholar

29. Cooley, M. E., J. F. Walker, D. G. Gonzalez, and G. E. Pollon, "Novel reflectarray element with variable phase characteristics," Proc. Inst. Elect. Eng. Microwaves, Antennas and Propagation, Vol. 144, No. 2, 149-151, May 1997.
doi:10.1049/ip-map:19970963        Google Scholar

30. Gianvittorio, J. P. and Y. Rahmat-Samii, "Reconfigurable reflectarray with variable height patch elements: Design and fabrication," Proc. IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 1800-1803, Jun. 2004.        Google Scholar

31. Gianvittorio, J. and Y. Rahmat-Samii, "Reconfigurable patch antennas for steerable reflectarray applications," IEEE Trans. Antennas and Propagat., Vol. 54, No. 5, 1388-1392, May 2006.
doi:10.1109/TAP.2006.874311        Google Scholar

32. Perret, E., H. Aubert, and H. Legay, "Scale-changing technique for the electromagnetic modeling of MEMS-controlled planar phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3594-3601, Sep. 2006.
doi:10.1109/TMTT.2006.879777        Google Scholar

33. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled seflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506        Google Scholar

34. Huang, J. and J. A. Encinar, Reflectarray Antennas, IEEE Wiley Press, 2007.
doi:10.1002/9780470178775.ch1

35. Siegel, C. M., V. Ziegler, B. Schonlinner, U. Prechtel, and H. Schumacher, "Patches with slots and lines of variable length," MEMSWAVE 2007, Barcelona, Spain, Jun. 26-29, 2007.        Google Scholar

36. Perruisseau-Carrier, J. and A. K. Skrivervik, "Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360°phase range," IEEE Antennas Wireless Propag. Lett., Vol. 7, 138-141, 2008.
doi:10.1109/LAWP.2008.919327        Google Scholar

37. Cheng, C. C. and A. Abbaspour-Tamijani, "Design and experimental verification of steerable reflect-arrays based on two-bit antenna-filter-antenna elements," IEEE MTT-S Int. Mic. Symp., Jun. 2009.        Google Scholar

38. Rajagopalan, H., Y. Rahmat-Samii, and W. A. Imbriale, "RF MEMS actuated reconfigurable reflectarray patch-slot element," IEEE Trans. Antennas Propag., Vol. 56, No. 12, Dec. 2008.
doi:10.1109/TAP.2008.2007388        Google Scholar

39. Pozar, D. M., "Bandwidth of reflectarrays," Electronics Letters, Vol. 39, No. 21, 1490-1491, 2003.
doi:10.1049/el:20030990        Google Scholar

40. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth consideration for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
doi:10.2528/PIERB07120405        Google Scholar

41. Encinar, J. A., "Design of two-layer printed reflectarray using patches of variable size," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1403-1410, Oct. 2001.
doi:10.1109/8.954929        Google Scholar

42. Bialkowski, M. E., A. W. Robinson, and H. J. Song, "Design, development, and testing of X-band amplifying reflectarrays," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1065-1076, 2002.
doi:10.1109/TAP.2002.801393        Google Scholar

43. Encinar, J. A., L. S. Datashvili, J. A. Zarnosa, M. Arrebola, M. Sierra Castaner, J. L. Besada-Sanmartin, H. Baier, and H. Legay, "Dualpolarizattion dual-coverage reflectarray for space applications," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2827-2837, 2006.
doi:10.1109/TAP.2006.882172        Google Scholar

44. Chaharmir, M. R., J. Shaker, M. Cuhaci, and A. Ittpiboon, "Broadband reflectarray antenna with double cross loops," Electronics Letters, Vol. 42, No. 2, 65-66, 2006.
doi:10.1049/el:20063299        Google Scholar

45. De Vita, P., A. Freni, G. L. Dassano, P. Pirinoli, and R. E. Zich, "Broadband element for high-gain single-layer printed reflectarray antenna," Electronics Letters, Vol. 43, No. 23, Nov. 8, 2007.        Google Scholar

46. Sayidmarie, K. H. and M. E. Bialkowski, "Phasing of a microstrip reflectarray using multi-dimensional scaling of its elements," Progress In Electromagnetics Research B, Vol. 2, 125-136, 2008.
doi:10.2528/PIERB07110402        Google Scholar

47. Bialkowski, M. E. and K. H. Sayidmarie, "Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size," IEEE Trans. Antennas Propag., Vol. 56, No. 11, Nov. 2008.        Google Scholar

48. Tsai, F.-C. E. and M. E. Bialkowski, "Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach," IEEE Trans. Antennas Propag., Vol. 51, No. 10, Oct. 2003.        Google Scholar

49. Sorrentino, R., R. V. Gatti, L. Marcaccioli, and B. Mencagli, "Electronic steerable MEMS antennas," 1st European Conference on Antennas and Propagation (EuCAP 2006), 2006.        Google Scholar

50. Zubir, F., M. K. A. Rahim, O. B. Ayop, and H. A. Majid, "Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
doi:10.2528/PIERB10071208        Google Scholar

51. Li, H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303        Google Scholar

52. Li, H., B.-Z. Wang, L. Guo, W. Shao, and P. Du, "A far field pattern analysis technique for reflectarrays including mutual coupling between elements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 87-95, 2009.
doi:10.1163/156939309787604607        Google Scholar

53. Topalli, K., M. Unlu, H. I. Atasoy, S. Demir, O. Aydin Civi, and T. Akin, "Empirical formulation of bridge inductance in inductively tuned RF MEMS shunt switches," Progress In Electromagnetics Research, Vol. 97, 343-356, 2009.
doi:10.2528/PIER09092502        Google Scholar