1. Boerner, D. E., "Controlled source electromagnetic deep sounding: Theory, results and correlation with natural source results," Surveys in Geophysics, Vol. 13, No. 4-5, 435-488, 1992. Google Scholar
2. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, Amsterdam, 2009.
3. Singh, N. P. and T. Mogi, "EMLCLLER-A program for computing the EM response of a large loop source over a layered earth model," Computer and Geosciences, Vol. 29, No. 10, 1301-1307, 2003. Google Scholar
4. Kong, F. N., S. E. Johnstad, and J. Park, "Wavenumber of the guided wave supported by a thin resistive layer in marine controlled-source electromagnetics," Geophysical Prospecting, Vol. 29, No. 10, 1301-1307, 2003. Google Scholar
5. Shastri, N. L. and H. P. Patra, "Multifrequency sounding results of laboratory simulated homogeneous and two-Layer earth models," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 749-752, 1988. Google Scholar
6. Kong, J. A., L. Tsang, and G. Simmons, "Geophysical subsurface probing with radio-frequency interferometry," IEEE Trans. Antennas Propagat., Vol. 22, No. 4, 616-620, 1974. Google Scholar
7. Singh, N. P. and T. Mogi, "Inversion of large loop transient electromagnetic data over layered earth models," Jour. Fac. Sci. Hokkaido Univ. Ser. VII, Vol. 12, No. 1, 41-54, 2003. Google Scholar
8. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, "Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity," Geophysics, Vol. 68, No. 6, 1857-1869, 2003. Google Scholar
9. Wait, J. R., "Mutual electromagnetic coupling of loops over a homogeneous ground," Geophysics, Vol. 20, No. 3, 630-637, 1955. Google Scholar
10. Constable, S. C., R. L. Parker, and C. G. Constable, "Occams inversion: A practical algorithm for generatlng smooth models from electromagnetic sounding data," Geophysics, Vol. 52, No. 3, 289-300, 1987. Google Scholar
11. Beard, L. P. and J. E. Nyquist, "Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability," Geophysics, Vol. 63, No. 5, 1556-1564, 1998. Google Scholar
12. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, No. 1, 181-200, 2005. Google Scholar
13. Guptasarma, D. and B. Singh, "New digital linear filters for Hankel J0 and J1 transforms," Geophysical Prospecting, Vol. 45, No. 5, 745-762, 1997. Google Scholar
14. Kong, F. N., "Hankel transform filters for dipole antenna radiation in a conductive medium," Geophysical Prospecting, Vol. 55, No. 1, 83-89, 2007. Google Scholar
15. Parise, M. and S. Cristina, "High-order electromagnetic modeling of shortwave inductive diathermy effects," Progress In Electromagnetics Research, Vol. 92, 235-253, 2009. Google Scholar
16. Alpak, F. O. and C. Torres-Verdin, "Data-adaptive resolution method for the parametric three-dimensional inversion of triaxial borehole electromagnetic measurements," Progress In Electromagnetics Research B, Vol. 25, 93-111, 2010. Google Scholar
17. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 785-798, 2009. Google Scholar
18. Prasad, R., R. Kumar, and D. Singh, "A radial basis function approach to retrieve soil moisture and crop variables from x-band scatterometer observations," Progress In Electromagnetics Research B, Vol. 12, 201-217, 2009. Google Scholar
19. Nordebo, S. and M. Gustafsson, "A priori modeling for gradient based inverse scattering algorithms," Progress In Electromagnetics Research B, Vol. 16, 407-432, 2009. Google Scholar
20. Caramanica, F. and G. Oliveri, "An innovative multi-source strategy for enhancing the reconstruction capabilities of inverse scattering techniques," Progress In Electromagnetics Research, Vol. 101, 349-374, 2010. Google Scholar
21. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009. Google Scholar
22. Zheng, H., M.-Z. Wang, Z. Zhao, and L. Li, "A novel linear EM reconstruction algorithm with phaseless data," Progress In Electromagnetics Research Letters, Vol. 14, 133-146, 2010. Google Scholar
23. Chen, X.-D., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009. Google Scholar
24. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010. Google Scholar
25. Mauriello, P. and D. Patella, "A data-adaptive probability-based fast ERT inversion method," Progress In Electromagnetics Research, Vol. 97, 275-290, 2009. Google Scholar
26. Cristina, S. and M. Parise, "Fast calculation of theoretical response curves for induction depth sounding," Proc. of the 39th European Microwave Conference, Sep. 29-Oct. 1, 2009, 1567-1570, Rome, Italy, 2009. Google Scholar
27. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory --- Volume 1, M. N. Nabighian Ed., 131-308, SEG, Tulsa, Oklahoma, 1988. Google Scholar
28. Ryu, J., H. F. Morrison, and S. H. Ward, "Electromagnetic fields about a loop source of current," Geophysics, Vol. 35, No. 5, 862-896, 1970. Google Scholar
29. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, 1986.
30. Lin, Z., X. Zhang, and G. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009. Google Scholar
31. Gennarelli, G. and G. Riccio, "Diffraction by a lossy double-negative metamaterial layer: a uniform asymptotic solution," Progress In Electromagnetics Research Letters, Vol. 13, 173-180, 2010. Google Scholar
32. Dai, S.-Y., C. Zhang, and Z.-S. Wu, "Electromagnetic scattering of objects above ground using MRTD/FDTD hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2187-2196, 2009. Google Scholar
33. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. Power Delivery, Vol. 14, No. 3, 1052-1061, 1999. Google Scholar
34. Gustavsen, B., "Improving the pole relocating properties of vector fitting," IEEE Trans. Power Delivery, Vol. 21, No. 3, 1587-1592, 2006. Google Scholar
35. Deschrijver, D., M. Mrozowski, T. Dhaene, and D. de Zutter, "Macromodeling of multiport systems using a fast implementation of the vector fitting method," IEEE Microwave Wireless Comp. Lett., Vol. 18, No. 6, 383-385, 2008. Google Scholar
36. Gustavsen, B. and C. Heitz, "Modal vector fitting: A tool for generating rational models of high accuracy with arbitrary terminal conditions," IEEE Trans. Adv. Packaging, Vol. 31, No. 4, 664-672, 2008. Google Scholar
37. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944.
38. Eroglu, A. and J. K. Lee, "Far field radiation from an arbitrarily oriented hertzian dipole in an unbounded electricaly gyrotropic medium," Progress In Electromagnetics Research, Vol. 89, 291-310, 2009. Google Scholar
39. Kudrin, A. V., E. Y. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Electromagnetic radiation from sources embedded in a cylindrically stratified unbounded gyrotropic medium," Progress In Electromagnetics Research B, Vol. 12, 297-331, 2009. Google Scholar
40. Ruppin, R., "Scattering of electromagnetic radiation by a coated perfect electromagnetic conductor sphere," Progress In Electromagnetics Research Letters, Vol. 8, 53-62, 2009. Google Scholar
41. Lamultree, S., C. Phongcharoenpanich, S. Kosulvit, and M. Krairiksh, "Analysis of radiation characteristics of a probe-excited rectangular ring antenna by the dyadic green's function approach," Progress In Electromagnetics Research B, Vol. 11, 79-101, 2009. Google Scholar
42. Mushref, M. A., "Radiation from an eccentric coated cylinder with slots of arbitrary sizes and positions," Progress In Electromagnetics Research B, Vol. 11, 55-78, 2009. Google Scholar
43. Boriraksantikul, N., P. Kirawanich, and N. E. Islam, "Near-field radiation from commercial cellular phones using a TEM cell," Progress In Electromagnetics Research B, Vol. 11, 15-28, 2009. Google Scholar
44. LaComb, J. A., "Spoke top antenna for transient radiation," Progress In Electromagnetics Research Letters, Vol. 11, 1-9, 2009. Google Scholar
45. Simons, N. R. S., A. Sebak, and G. E. Bridges, "Application of the TLM method to half-space and remote-sensing problems," IEEE Trans. Geosci. Remote Sensing, Vol. 33, No. 3, 759-767, 1995. Google Scholar
46. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010. Google Scholar
47. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave x-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008. Google Scholar
48. Singh, D., N. K. Choudhary, K. C. Tiwari, and R. Prasad, "Shape recognition of shallow buried metallic objects at x-band using ann and image analysis techniques," Progress In Electromagnetics Research B, Vol. 13, 257-273, 2009. Google Scholar
49. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3D BI-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009. Google Scholar
50. Lu, Y. L., Y.-L. Wang, Y. H. Xu, and K. Li, "Electromagnetic field of a horizontal electric dipole buried in a four-layered region," Progress In Electromagnetics Research B, Vol. 16, 247-275, 2009. Google Scholar
51. Attiya, A. M., "Lower frequency limit of carbon nanotube antenna," Progress In Electromagnetics Research, Vol. 94, 419-433, 2009. Google Scholar
52. Muoz-Barrutia, A., X. Artaechevarria, and C. Ortiz-de-Solorzano, "Spatially variant convolution with scaled B-splines," IEEE Trans. Image Processing, Vol. 19, No. 1, 11-24, 2010. Google Scholar
53. Higham, N. J., Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 2002.
54. Dongarra, J. J., "Performance of various computers using standard linear equations software,", Technical report CS-89-85, Department of Computer Science, University of Tennessee, Knoxville, 2008. Google Scholar
55. Telford, W. M., L. P. Geldart, and R. E. Sheriff, Applied Geophysics, Cambridge University Press, New York, 1990.