Vol. 111
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-22
Experimental Breast Tumor Detection Using Nn-Based UWB Imaging
By
Progress In Electromagnetics Research, Vol. 111, 447-465, 2011
Abstract
This paper presents a system with experimental complement to a simulation work for early breast tumor detection. The experiments are conducted using commercial Ultrawide-Band (UWB) transceivers, Neural Network (NN) based Pattern Recognition (PR) software for imaging and proposed breast phantoms for homogenous and heterogeneous tissues. The proposed breast phantoms (homogeneous and heterogeneous) and tumor are constructed using available low cost materials and their mixtures with minimal effort. A specific glass is used as skin. All the materials and their mixtures are considered according to the ratio of the dielectric properties of the breast tissues. Experiments to detect tumor are performed in regular noisy room environment. The UWB signals are transmitted from one side of the breast phantom (for both cases) and received from opposite side diagonally repeatedly. Using discrete cosine transform (DCT) of these received signals, a Neural Network (NN) module is developed, trained and tested. The tumor existence, size and location detection rates for both cases are highly satisfactory, which are approximately: (i) 100%, 95.8% and 94.3% for homogeneous and (ii) 100%, 93.4% and 93.1% for heterogeneous cases respectively. This gives assurance of early detection and the practical usefulness of the developed system in near future.
Citation
Saleh Ali AlShehri, Sabira Khatun, Adznan B. Jantan, Raja Syamsul Azmir Raja Abdullah, Rozi Mahmud, and Zaiki Awang, "Experimental Breast Tumor Detection Using Nn-Based UWB Imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102
References

1. Bindu, G., A. Lonappan, V. Thomas, C. K. Ananadan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetic Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802        Google Scholar

2. Lim, H. B., N. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transaction on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716        Google Scholar

3. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast tumor detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759        Google Scholar

4. Fear, E. C., J. Still, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 887-897, March 2003.
doi:10.1109/TMTT.2003.808630        Google Scholar

5. Li, X., S. K. Davis, S. C. Hagness, D. W. Weide, and B. D. Veen, "Microwave imaging via space-time beam forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory Techniques, Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686        Google Scholar

6. Xiao, X., "Study on the breast cancer detection by UWB microwave imaging," Proceedings of the International Conference on Microwave and Millimeter Wave Technology, ICMMT2008, Nanjing, China, April 21-24, 2008.        Google Scholar

7. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330        Google Scholar

8. Alshehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural networks," Progress In Electromagnetic Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202        Google Scholar

9. O'Halloran, M., M. Glavin, and E. Jones, "Performance and robustness of a multistatic MIST beamforming algorithm for breast cancer detection," Progress In Electromagnetic Research, Vol. 105, 403-424, 2010.
doi:10.2528/PIER10011205        Google Scholar

10. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetic Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002        Google Scholar

11. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205        Google Scholar

12. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetic Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705        Google Scholar

13. Sha, L., E. R. Ward, and B. Story, "A review of dielectric properties of normal and malignant breast tissue," Proceedings IEEE SoutheastCon, 457-462, April 5-7, 2002.        Google Scholar

14. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetic Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001        Google Scholar

15. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetic Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902        Google Scholar

16. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856        Google Scholar

17. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004        Google Scholar

18. Lai, J. C., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantom for ultra-wideband microwave imaging applications," Progress In Electromagnetic Research, Vol. 100, 377-415, 2010.        Google Scholar

19. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave application," Physics in Medicine and Biology, Vol. 50, 4245-4258, August 2005.
doi:10.1088/0031-9155/50/18/001        Google Scholar

20. Time Domain Corporation, Comings Research Park, 330 Wynn Drive, Suite 300, Hantsville, Al 35805, USA.

21. Miyakawa, M., T. Ishida, and M. Wantanabe, "Imaging capability of an early stage breast tumor by CP-MCT," Proceedings of the 26th Annual International Conference of the IEEE EMBS, Vol. 1, 1427-1430, San Francisco, CA, USA, September 1-5, 2004.        Google Scholar

22. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, IOP Publishing, October 2007.        Google Scholar

23. Bindu, G., A. Lonappan, V. Thomas, V. Hamsakkutty, D. K. Aanandan, and K. T. Mathew, "Microwave characterization of breast-phantom materials," Microwave and Optical Technology Letters, Vol. 43, No. 6, 506-508, December 2004.
doi:10.1002/mop.20517        Google Scholar

24. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglandular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetic Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701        Google Scholar

25. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissues obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, IOP Publishing, April 2007.        Google Scholar

26. Dielectric Constants of Common Materials http: //www.flowmeterdirectory.com/dielectric constant 01.html.

27. Conceicao, R. C., M. O'Halloran, E. Jones and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetic Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904        Google Scholar

28. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetic Research, Vol. 99, 1-20, 2009.
doi:10.2528/PIER09100204        Google Scholar

29. Ahmed, N., T. Natarajan, and K. R. Rao, "Discrete cosine transform," IEEE Transactions on Computers, Vol. 32, 90-93, January 1974.
doi:10.1109/T-C.1974.223784        Google Scholar