1. Kumar, D., P. K. Choudhury, and O. N. Singh II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.
doi:10.2528/PIER07120302 Google Scholar
2. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004 Google Scholar
3. Lin, H.-N. and C.-C. Tang, "Analysis and design for high-gain antenna with periodic structures," PIERS Online, Vol. 6, No. 2, 181-184, 2010.
doi:10.2529/PIERS090905024125 Google Scholar
4. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic band-gap structure," Progress In Electromagnetics Research Letters, Vol. 9, 67-74, 2009.
doi:10.2528/PIERL09042302 Google Scholar
5. Escorcia-García, J. and M. E. M. Mora-Ramos, "Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon," PIERS Online, Vol. 5, No. 2, 167-170, 2009.
doi:10.2529/PIERS080906010703 Google Scholar
6. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401 Google Scholar
7. Yang, M., J. Xu, Q. Zhao, L. Peng, and G. Li, "Compact, broad-stopband lowpass filters using sirs-loaded circular hairpin resonators," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
doi:10.2528/PIER09120901 Google Scholar
8. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608 Google Scholar
9. Amari, S., R. Vahldieck, J. Bornemann, and P. Leuchtmann, "Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues," IEEE Trans. Microwave Theory Tech., Vol. 48, 453-460, 2000.
doi:10.1109/22.826846 Google Scholar
10. Amari, S., R. Vahldieck, and J. Bornemann, "Analysis of propagation in periodically loaded circular waveguide," IEE Proc. Microwave Antennas Propagation, Vol. 146, No. 1, 50-54, 1999.
doi:10.1049/ip-map:19990140 Google Scholar
11. Clarricoats, P. J. B. and A. D. Olver, Corrugated Horns for Microwave Antennas, Peter Peregrinus, London, 1984.
doi:10.1049/PBEW018E
12. Heydari, R. D., H. R. Hassani, and A. R. Mallahzadeh, "A new 2-18 GHz quad-ridged horn antenna," Progress In Electromagnetics Research, Vol. 81, 183-195, 2008.
doi:10.2528/PIER08010103 Google Scholar
13. Uher, J., J. Bornemann, and U. Rosenberg, Waveguides Components for Antenna Feed Systems: Theory and CAD, Artech House, Norwood, 1993.
14. Shi, W., L. Yuzheng, and T. Higo, "A new method for dispersion curves of HOM in periodical axisymmetric accelerating structures," Proc. 2nd Asian Particle Accelerator Conf., 153-155, Beijing, China, 2001. Google Scholar
15. Hu, Y., C. Tang, H. Chen, Y. Lin, and D. Tong, "An X-band disk and washer accelerating structure for electron accelerators," Proc. Particle Accelerator Conf., 975-977, Chicago, 2001. Google Scholar
16. Amin, M. R. and K. Ogura, "Dispersion characteristics of a rectangularly corrugated cylindrical slow-wave structure driven by a non-relativistic annular electron beam," IET Microwave Antennas Propag., Vol. 1, No. 3, 575-579, 2007.
doi:10.1049/iet-map:20060279 Google Scholar
17. Ding, S., B. Jia, F. Li, and Z. Zhu, "3D simulation of 18-vane 5.8 GHz magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
doi:10.1163/156939308787537946 Google Scholar
18. Malek, F., "The analytical design of a folded waveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
doi:10.2528/PIER09092604 Google Scholar
19. Mulcahy, T., H. Song, and F. Francisco, "New method of integrating periodic permanent magnet (PPM) assembly in traveling wave tubes (TWTs)," Progress In Electromagnetics Research C, Vol. 10, 187-199, 2009.
doi:10.2528/PIERC09082907 Google Scholar
20. Jain, P. K. and B. N. Basu, "Electromagnetic wave propagation through helical structures," Electromagnetic Fields in Unconventional Materials, O. N. Singh and A. Lakhtakia, Ed., John Wiley & Sons, USA, 2000. Google Scholar
21. Zhu, Z. J., B. F. Jia, and D. M. Wan, "Efficiency improvement of helix traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 13, 1747-1756, 2008.
doi:10.1163/156939308786375145 Google Scholar
22. Duan, Z. Y., Y. B. Gong, Y. Y. Wei, W. X. Wang, B.-I. Wu, and J. A. Kong, "Efficiency improvement of broadband helix traveling wave tubes using hybrid phase velocity tapering model," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 1013-1023, 2008.
doi:10.1163/156939308784150119 Google Scholar
23. Jerby, E. and G. Bekefi, "Cyclotron maser experiments in a periodic wave guide," Phys. Rev. E, Vol. 48, No. 6, 4637-4641, 1993.
doi:10.1103/PhysRevE.48.4637 Google Scholar
24. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys., Vol. 76, No. 2, 489-540, May 2004.
doi:10.1103/RevModPhys.76.489 Google Scholar
25. Barroso, J. J., R. A. Correa, and P. J. de Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1221-1230, Sep. 1998.
doi:10.1109/22.709460 Google Scholar
26. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, Jan. 1996.
doi:10.1109/22.481385 Google Scholar
27. Thumm, M., "State-of-the-art of high-power gyro-devices and free electron masers, Update 2008,", Scientific Report FZKA 6224, Forschungszentrum Karlsruhe, Germany, Jan. 2008. Google Scholar
28. Singh, G., "Analytical study of the interaction structure of vane-loaded gyro-traveling wave tube amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402 Google Scholar
29. Qiu, C. R., Z. B. Ouyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, "Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier," IEEE Trans. Plasma Sci., Vol. 33, No. 3, 1013-1018, Jun. 2005.
doi:10.1109/TPS.2005.848600 Google Scholar
30. Kesari, V., Analysis of Disc-loaded Circular Waveguides for Wideband Gyro-TWTs, LAP-Lambert Academic Publishing AG & Co., Germany, 2009, ISBN: 978-3-8383-1145-6.
31. Kesari, V., P. K. Jain, and B. N. Basu, "Analytical approaches to a disc loaded cylindrical waveguide for potential application in wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 32, No. 5, 2144-2151, Oct. 2004.
doi:10.1109/TPS.2004.835518 Google Scholar
32. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a circular waveguide loaded with thick annular metal discs for wideband gyro-TWTs," IEEE Trans. Plasma Sci., Vol. 33, No. 4, 1358-1365, Aug. 2005.
doi:10.1109/TPS.2005.852393 Google Scholar
33. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a disc-loaded circular waveguide for interaction impedance of a gyrotron amplifier," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 8, 1093-1110, Aug. 2005.
doi:10.1007/s10762-005-7270-9 Google Scholar
34. Kesari, V., P. K. Jain, and B. N. Basu, "Modeling of axially periodic circular waveguide with combined dielectric and metal loading," J. Physics D: Applied Physics, Vol. 38, 3523-3529, Sep. 2005.
doi:10.1088/0022-3727/38/18/030 Google Scholar
35. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305 Google Scholar
36. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505 Google Scholar
37. Choe, J. Y. and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix loaded waveguides," Int. J. Electron., Vol. 53, No. 6, 729-741, Jun. 1982.
doi:10.1080/00207218208901564 Google Scholar
38. Leou, K. C., T. Pi, D. B. Mcdermott, and Jr. N. C. Luhmann, "Circuit design for a wideband disc loaded gyro-TWT amplifier," IEEE Trans. Plasma Sc., Vol. 26, No. 3, 488-495, Jun. 1998.
doi:10.1109/27.700782 Google Scholar
39. Yue, L., W. Wang, Y. Wei, and Y. Gong, "Approach to a coaxial arbitrary-shaped groove cylindrical waveguide for application in wideband gyro-TWTs," IEEE Trans. Plasma Sc., Vol. 35, No. 3, 551-558, Jun. 2007.
doi:10.1109/TPS.2007.896982 Google Scholar
40. Bratman, V. L., A. W. Gross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, "High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide," Phys. Rev. Lett., Vol. 84, No. 12, 2746-2749, Mar. 2000.
doi:10.1103/PhysRevLett.84.2746 Google Scholar
41. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. Electron Dev., Vol. 43, No. 12, 2290-2299, Dec. 1996.
doi:10.1109/16.544423 Google Scholar
42. Rao, S. J., P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading effects on gyro-travelling-wave tubes," Int. J. Electron., Vol. 82, No. 6, 663-675, Jun. 1997.
doi:10.1080/002072197135814 Google Scholar